http://www.orangetekint.com

细胞的超威结构及其基本病理过程,高中生物语句必修一2

Virchow在19世纪中期所奠定的细胞病理学说,通过近代对细胞及其病变的超威结构以及结构与功能相结合的研究,已经获得了新的更广更深的基础,扩大和加深了对疾病的理解。

02节人体细胞基本知识与修正

生命的结构基础

一、内膜系统与蛋白质运输

细胞是一个由细胞膜封闭的基本生命单元,内含一系列明确无误的互相分隔的反应腔室,这就是由细胞膜为界限的各种细胞器,是细胞代谢和细胞活力的形态支柱。细胞内的这种严格分隔保证各种细胞器分别进行着无数的生化反应,行使各自的独特功能,维持细胞和机体的生命活动。细胞器的改变是各种病变的基本组成部分。

人体的微观概念是细胞,生命活动主要是以细胞为基本单位进行的。细胞表面有细胞膜,它使每个细胞与周围环境隔离开,维持着相对稳定的细胞内部环境,并且具有保护细胞的作用。同时,细胞与周围环境不断地交换与运输物质,主要依靠细胞膜进行。此外,活细胞中的各种代谢活动,都与细胞膜的结构和功能有密切关系。

1、细胞学说的创始人是施莱登和施旺。细胞学说揭示了细胞统一性和生物体结构统一性。

1、内质网:

一、细胞核

(1)细胞膜的分子结构:

2、细胞学说的要点是:细胞是一个有机体,一切动植物都由细胞发育而来,并由细胞和细胞产物所构成;细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命起作用;新细胞可从老细胞中产生。

粗面内质网(有核糖体):主要运输蛋白质加工、修饰和折叠

细胞核是遗传信息的载体,细胞的调节中心,其形态随细胞所处的周期阶段而异,通常以间期核为准。

研究人体细胞膜的化学组成,大都以动物细胞、红细胞、神经髓质等作为研究对象。通过对这些细胞膜的化学分析知道,细胞膜主要是一层由磷脂和蛋白质构成的膜。在不同的细胞膜中,磷脂和蛋白质的比例不同。

3、显微结构:在普通光学显微镜中能够观察到的细胞结构。

滑面内质网(物核糖体):糖原分解、酯类合成的场所、类固醇激素合成、干细胞解毒、肌肉收缩。

细胞核外被核膜。核膜由内外二层各厚约3nm的单位膜构成,中间为2~5nm宽的间隙;核膜上有直径约50nm的微孔,作为核浆与胞浆间交通的孔道,其数目因细胞类型和功能而异,多者可占全核表面积的25%;在肝细胞核据估算约有2000个核孔。

观察细胞膜,只有在电子显微镜下才能真正看到一层厚约80×10-10m的膜。细胞膜具有三个层次,内层和外层,以及中间层。具体来说,在膜的中间是磷脂双分子层,实际上包括两层磷脂分子,这是细胞膜的基本支架,由它支持着许多蛋白质分子。有些蛋白质分子排布在磷脂双分子层的外侧,镶嵌在膜的表层;另一类蛋白质分子,有的嵌插在磷脂双分子层中,有的甚至贯穿在整个磷脂双分子层中。分布在磷脂双分子层表层的蛋白质分子,与嵌插、贯穿在内的蛋白质分子,是不均匀、不对称的。

4、亚显微结构:在普通光学显微镜下观察不能分辨清楚的细胞内各种微细结构。

核膜——内质网——高尔基体——质膜

核浆主由染色质构成,其主要成分为脱氧核糖核酸,并以与蛋白质相结合的形式存在,后者由组蛋白与非组蛋白组成。染色质的NDA现在已可用多种方法加以鉴定和定量测定。

构成细胞膜的磷脂分子和蛋白质分子大都是可以流动的,而不是静止的。细胞膜的这种结构特点,对于它完成各种生理功能是非常重要的。

5、原核细胞较小,没有成形的细胞核。核物质集中在核区,没有染色体,DNA不与蛋白质结合,无核膜、无核仁;细胞器只有核糖体;有细胞壁,成分与真核细胞不同。

2、高尔基复合体

核内较粗大浓缩的、碱性染料深染的团块状染色质为异染色质,呈细颗粒状弥散分布的、用普通染色法几乎不着色的染色质则为常染色质。一部分异染色质也可以上述两种状态存在。从生化角度看,异染色质不具遗传活性,相反,常染色质则大部分具遗传活性。

在细胞膜的外表,有一层由细胞膜上的蛋白质与多糖结合形成的糖蛋白,叫做糖被。它在细胞生命活动中具有重要的功能。例如,消化道和呼吸道等表皮细胞表面的糖蛋白有保护和润滑作用,而尤其是糖被对于细胞表面的识别有密切关系。经研究发现,动物细胞表面糖蛋白的识别作用,好比是细胞与细胞之间,或者细胞与其他大分子之间,互相联络用的文字或语言。

6、真核细胞大,有真正的细胞核,有一定数目的染色体,有核膜、有核仁,一般有多种细胞器。

蛋白质和脂类的运输,主要是蛋白质的糖基化及修饰和蛋白质的水解、分选。

间期核的染色质模式还反映细胞的功能状态。一般而言,大而淡染的核提示细胞活性较高;小而深染的核则提示细胞活性有限或降低。

以前认为细胞的表面仅仅有一层细胞膜而已,现在认识到细胞膜是一个复合的结构体系,并且也是一个多功能体系。据目前的研究知道,细胞表面主要包括:细胞膜、糖被和膜下溶胶层,以及细胞表面的一些特化结构,细胞之间的各种联结结构。关于细胞表面的研究,还需进一步探讨。

7、原核细胞与真核细胞的本质区别是有无以核膜为界限的细胞核。

3、溶酶体

细胞损伤时核的改变

细胞膜的主要功能:

8、原核生物:由原核细胞构成的生物。如:蓝藻、细菌、放线菌、支原体、衣原体等都属于原核生物。

是细胞内的消化器官。

1、核大小的改变 核的大小通常反映着核的功能活性状态,功能旺盛时核增大,核浆淡染,核仁也相应增大和增多。如果这种状态持续较久,则可出现多倍体核或形成多核巨细胞。多倍体核在正常情况下亦可见于某些功能旺盛的细胞,如肝细胞中可见约20%为多倍体核。在病理状态下,如晚期肝炎及实验性肝癌前期等均可见多倍体的肝细胞明显增多。

细胞膜有多方面的重要功能,它与细胞的物质交换、细胞识别、分泌、排泄、免疫等都有密切的关系。

9、发菜、念珠藻、蓝球藻、颤藻都属于蓝藻。

功能:对部分细胞进行消化分解、清楚细胞,还可以自溶细胞。

核的增大除见于功能旺盛外,也可见于细胞受损时,最常见的情况为细胞水肿。这主要是细胞量匮乏或毒性损伤所致,是核膜钠泵衰竭导致水和电解质运输障碍的结果。这种核肿大又称为变性性核肿大。

活细胞不停地进行新陈代谢作用,它必须不断地与周围环境交换物质,物质通过细胞膜进出细胞。无机离子和小分子有机物质进出细胞主要通过自由扩散和主动运输等方式,而大分子和颗粒性物质主要通过内吞作用进入细胞。

10、蓝藻细胞内含有藻蓝素和叶绿素,是能进行光合作用的自养生物。

二、核糖体与蛋白质合成

相反,当细胞功能下降或细胞受损时,核的体积则变小,染色质变致密,如见于器官萎缩时。与此同时核仁也缩小。

自由扩散: 这种方式是被选择吸收的物质,从浓度高的一侧通过细胞膜向浓度低的一侧转运,例如O2、CO2、甘油、乙醇、苯等物质,可以从浓度高的一侧转运到浓度低的一侧。这种物质出入细胞的方式叫做自由扩散。自由扩散不需要消耗细胞内新陈代谢所释放的能量,若说成运输,而是主动运输。

11、细菌中的绝大多数种类是营腐生或寄生生活的异养生物。

核糖体:细胞内蛋白质合成的分子机器。按照mRNA由氨基酸合成多肽链。

2.核形的改变 光学显微镜下,各种细胞大多具有各自形状独特的核,可为圆形、椭圆形、梭形、杆形、肾形、印戒形、空洞形以及奇形怪状的不规则形等。在电镜下由于切片极薄,切面可以多种多样,但均非核的全貌。核的多形性和深染特别多见于恶生肿瘤细胞,称为核的异型性。

主动运输:主动运输的特点是被选择吸收的物质是从浓度低的一侧,通过细胞膜运输到浓度高的一侧,必须有载体蛋白质的协助,这是因为蛋白质能自由运动,而不需要消耗细胞内新陈代谢所释放的能量,这个能量是热量,是维护体温的,不是人体运动的能量。例如,轮藻细胞中K+的含量比它所生存的水环境中的K+大63倍,说明它喜钾元素。人的红细胞中K+的浓度比血浆中K+的浓度要高出30倍,也说明而红细胞喜钾云素。而Na+的浓度却比血浆中Na+的浓度低6倍,说明红细胞厌钠元素。这是轮藻细胞和人的红细胞的共同之处是喜钾厌钠。不能说“具有不断地积累K+和运出Na+的能力”,因为细胞膜内外的K+和Na+都能自由运动,至于为什么细胞内液钾多钠少,而外液钾少钠多,这是因为钾有天然放射性同位素40K,而钠没有放射性同位素,放射性电子,才是真能量。

12、真核生物:由真核细胞构成的生物。如:酵母菌、霉菌、食用菌、衣藻、变形虫、草里履虫、疟原虫等。

三、线粒体与能量代谢

3.核结构的改变 细胞在衰亡及损伤过程中的重要表征之一是核的改变,主要表现为核膜和染色质的改变。

主动运输这种物质出入细胞的方式,能够保证活细胞按照生命活动的需要,主动地选择吸收所需要的营养物质,排出新陈代谢产生的废物和对细胞有害的物质。可见,主动运输对于活细胞完成各项生命活动有重要作用。

13、原核生物的遗传不符合孟德尔遗传规律;真核生物在有性生殖过程中,核基因的遗传符合孟德尔遗传规律。

线粒体是细胞的动力工厂。氧化功能(ATP)的场所。

核浓缩:染色质在核浆内聚集成致密浓染的大小不等的团块状,继而整个细胞核收缩变小,最后仅留下一致密的团块,是为核浓缩。这种浓缩的核最后还可再崩解为若干碎片而逐渐消失。

上面讲述的物质通过细胞膜出入细胞的两种方式,可以说明细胞膜是一种选择透过性膜。这种膜可以让水分子自由通过,细胞要选择吸收的离子和小分子也可以通过,而其他的离子、小分子和大分子则不能通过。

14、自然条件下,原核生物的可遗传变异的类型只有基因突变;真核生物的可遗传变异的类型有基因突变、基因重组、染色体变异。

线粒体嵴的数目,与细胞本身的生理活动有关。

核碎裂(karyorrhexis):染色质逐渐边集于核膜内层,形成较大的高电子密度的染色质团块。核膜起初尚保持完整,以后乃在多处发生断裂,核逐渐变小,最后裂解为若干致密浓染的碎片。

细胞的内吞作用和外排作用: 大分子和颗粒性物质主要通过内吞作用进入细胞。这些物质由于与细胞膜上的某些蛋白质有特异的亲和力而附着在膜上,然后这部分细胞膜内陷,形成小囊,这些物质就被包围在内。接着,小囊从细胞膜上分离下来而形成小泡,并且进入细胞内部,这种现象叫做内吞作用。

15、原核细胞如细菌主要以二分裂的方式进行分裂;真核细胞的分裂方式有有丝分裂、无丝分裂、减数分裂。

功能:1、氧化磷酸化,合成ATP,提供能量;

核溶解(karyolysis):变致密的结成块状的染色质最后完全溶解消失。即核溶解。核溶解变可不经过核浓缩或核碎裂而一开始即独立进行。在这种情况下,受损的核很早就消失。

与内吞作用相反,有些物质在细胞膜内被一层膜所包围,形成小泡,小泡逐渐移到细胞表面,小泡膜与细胞膜融合在一起,并且向细胞外张开,使内含物质排出细胞之外,这种现象叫做外排作用。细胞通过外排作用向外分泌物质。

16、细胞膜主要由脂质和蛋白质组成。还有少量的糖类。磷脂双分子层是基本骨架,功能越复杂的细胞膜,蛋白质的种类和数量越多。

2、细胞氧化,酶的催化,氧化、分解、释放能量,排除CO2和H2O。

上述染色质边集、核浓缩、核碎裂、核溶解等核的结构改变为核和细胞不可复性损伤的标志,提示活体内细胞死亡。

植物细胞在细胞膜的外面还有一层细胞壁,它的化学成分主要是纤维素和果胶。细胞壁对于植物细胞有支持和保护作用。

17、生物膜中,内质网与高尔基体的成分最接近。

线粒体也是半自主性细胞器,但线粒体DNA只编码少量线粒体蛋白质

4.核内包含物 在某些细胞损伤时可见核内出现各种不同的包含物,可为胞浆成分,亦可为非细胞本身的异物,但最常见的还是前者。这种胞浆性包含物可在两种情况下出现:①胞浆成分隔着核膜向核内膨突,以致在一定的切面上看来,似乎胞浆成分已进入核内,但实际上大多仍可见其周围有核膜包绕,其中的胞浆成分常呈变性性改变。这种包含物称为胞浆性假包含物;②在有丝分裂末期,某些胞浆结构被封入形成中的子细胞核内,以后出现于子细胞核中,称为真性胞浆性包含物。

(2)细胞质的结构和功能:

18、在一次胞吐作用中,内质网膜整体减少,细胞膜整体增多,高尔基体膜基本不变。

四、细胞核

图1-1 恶性肿瘤细胞的奇异形核

在细胞膜以内、细胞核以外的全部原生质,叫做细胞质。用光学显微镜观察活细胞,可以看到细胞质是均匀透明的胶状物质。活细胞中的细胞质处于不断流动的状态。细胞质主要包括细胞质基质和细胞器。

19、细胞膜不仅使细胞具有一个相对稳定的内部环境,同时在细胞与环境之间进行着物质运输、能量交换和信息传递的过程中起着决定性的作用。

细胞核:遗传物质的核心

图中央为一巨大的瘤细胞核,核膜曲折凹陷,使核呈奇异形

细胞质基质中含有水、无机盐离子、脂类、糖类、氨基酸和核苷酸等,还有很多种酶。细胞质基质是活细胞进行新陈代谢的主要场所,细胞质基质为新陈代谢的进行,提供所需要的物质和一定的环境条件。例如,提供ATP、核苷酸、氨基酸等。

20、细胞内的广阔的膜面积为酶提供了大量的附着位点,为各种化学反应的顺利进行创造了有利条件。

1、核膜:将DNA与细胞质分开,保护DNA,使DNA复制和RNA的翻译。

■[此处缺少一些内容]■

在细胞质基质中,悬浮着多种细胞器:主要有线粒体和叶绿体,此外还有内质网、核糖体、高尔基体、中心体和液泡等。每一种细胞器都有特定的形态结构,完成各自专有的功能。

21、细胞涨破后,可以用差速离心法,得到较纯的细胞膜。提取细胞膜最常用的材料是哺乳动物成熟的红细胞(因它没有核膜和细胞器膜)。

2、染色质和染色体

5.核仁的改变 核仁为核蛋白体RNA转录和转化的所在。除含蛋白的均质性基质外,电镜下核仁主由线团状或网状电子致密的核仁丝和网孔中无结构的低电子密度的无定形部组成。核仁无界膜,直接患浮于核浆内。

线粒体普遍存在于植物细胞和动物细胞中,它是活细胞进行有氧呼吸的主要场所。现在知道,细胞生命活动所必需的能量,大约95%来自线粒体。因此,有人把线粒体叫做细胞内供应能量的“动力工厂”。

22、罗伯特森在电镜下看到细胞膜清晰地暗亮暗三层结构。

染色质和染色体可以相互转变,化学组成相同,但构象和包装程度不同。

形态上和生物上核仁由3种不同的成分构成:①原纤维状成分,内含蛋白质及与其相结合的45S-rRNA;②细颗粒状成分,主要由12S-rRNA构成,为核仁的嗜碱性成分;③细丝状成分,仅由来自胞浆的蛋白质构成,穿插于整个核仁内。3种核仁成分的空间排列状态可反映细胞的蛋白合成活性,例如:

在光学显微镜下观察,线粒体大多数呈椭球形。在电子显微镜下观察,线粒体是由内外两层膜构成的。外膜使线粒体与周围的细胞质基质分开。内膜的某些部位向线粒体的内腔折叠,形成嵴。嵴的周围充满液态的基质。在内膜和基质中,有许多种与有氧呼吸有关的酶。

23、在细胞膜的外表,有一层由细胞膜上的蛋白质与糖类结合而成的糖蛋白,叫做糖被。糖被与细胞表面的识别有密切关系。细胞膜表面还有糖类和脂质分子合成的糖脂。

染色质组装成染色体:DNA——核小体——螺线管——超螺线管——染色体

壳状核仁:原纤维状成分集中位于核仁中央,细颗状成分呈壳状包绕于外层。这种细胞的合成活性甚低。

线粒体一般是均匀地分布在细胞质基质中,但是它在活细胞中能自由地移动,往往在细胞内新陈代谢旺盛的部位比较集中。例如,线粒体在小鼠受精卵的分裂面的附近比较集中。叶绿体是绿色植物叶肉细胞中,进行光合作用的细胞器。因此,有人把它比喻为“养料制造工厂”和“能量转换站”。

24、消化道和呼吸道上皮细胞表面的糖蛋白有保护和润滑作用。

3、核仁:主要功能是转录rRNA。

海绵状核仁:这种核仁的原纤维状与细颗状成分呈海绵状排列。这种细胞的合成活性升高。大多数所谓的“工作核”具有这种核仁。

在光学显微镜下观察高等植物的叶绿体,可以看到它一般呈扁平的椭球形或球形。在电子显微镜下,可以看到叶绿体的外面有双层膜,使叶绿体内部与外界隔开。叶绿体的内部含有几个到几十个基粒。在叶绿体的内膜上、基粒上和基质中,含有许多进行光合作用所必需的酶。

25、膜蛋白:指细胞内各种膜结构中蛋白质成分。细胞在癌变的过程中,细胞膜的成分发生改变,产生甲胞蛋白(AFP)、癌胚抗原(CEA)等物质。

4、核基质:与DNA复制,RNA转录和加工,染色体组装及病毒复制等生命活动都有密切相关。

高颗粒性核仁:由海绵状核仁转化而成,原纤维状成分几乎消失,核仁主要由颗粒状成分构成,故组织学上呈强嗜碱性,细胞的合成活性旺盛。这种核仁常见于炎症和肿瘤细胞。

绝大多数植物和动物的细胞内都有内质网。内质网有两种:一种是表面光滑的;另一种是上面附着许多小颗粒状的核糖体的。内质网是由膜结构连接而成的网状物,广泛地分布在细胞质基质内。内质网增大了细胞内的膜面积,膜上附着很多种酶,为细胞内各种化学反应的正常进行提供了有利条件。内质网与蛋白质、脂类和糖类的合成有关,也是蛋白质等的运输通道。有人比喻说,内质网是有机物合成的“车间”。

26、细胞膜的功能:一、将细胞与外界环境分隔开。二、控制物质进出细胞。三、进行细胞间的信息交流。

五、细胞通讯

低颗粒性核仁,与上述高颗粒性核仁相反,这种核仁的细颗粒状成分锐减,故电镜下原纤维状成分显得突出,电子密度较低。这种核仁常见于再生时,因此时细颗粒成分过多地被胞浆所利用。

核糖体是椭圆形的粒状小体,有些附着在内质网上,有些游离在细胞质基质中。核糖体是细胞内将氨基酸合成为蛋白质的场所,因此,有人把它比喻成蛋白质的“装配机器”。

27、科研上鉴别死细胞和活细胞,常用“染色排除法”。例如,用台盼蓝染色,死的动物细胞会被染成蓝色,而活的动物细胞不着色,从而判断细胞是否死亡。

1、方式:

分离性核仁:超微结构上3种核仁成分清楚地互相分离,原纤维状和细颗粒状成分减少。这种核仁变小,无活性,常见于核仁转录过程被抗生素、细胞抑制剂、缺氧和蝇菌素中毒等所完全阻断时。

高尔基体普遍存在于植物细胞和动物细胞中。大多位于细胞核附近的细胞质中。一般认为,动物细胞中的高尔基体与细胞分泌物的形成有关,还与细胞质内蛋白质的浓缩和运输有关,有人把它比喻成蛋白质的“加工厂”。植物细胞分裂时,高尔基体与细胞壁的形成有关。

28、载体蛋白:膜结构中与物质运输有关的一种跨膜蛋白质,细胞膜中的载体蛋白在协助扩散和主动运输中都有特异性。

直接通讯:间隙链接;膜表面分子接触通讯。

由此可见,核仁的大小和数目的多少常反映细胞的功能活性状态:大和多的核仁是细胞功能活性高的表现,反之则细胞功能活性低。

动物细胞和低等植物的细胞中有中心体,通常位于细胞核附近。每个中心体由两个互相垂直排列的中心粒及其周围物质组成。动物细胞的中心体与有丝分裂有关。液泡是植物细胞质中的泡状结构。成熟的植物细胞中的液泡很大,可占据整个细胞体积的90%。

29、细胞膜的选择透过性:这种膜可以让水分子自由通过,细胞要选择吸收的离子和小分子(如:氨基酸、葡萄糖)也可以通过,而其它的离子、小分子和大分子(如:信使RNA、蛋白质、核酸、蔗糖)则不能通过。

间接通讯:内分泌激素;旁分泌;自分泌;突触信号传递。

二、细 胞 膜

液泡的表面有液泡膜。液泡内有细胞液,其中含有有机酸、生物碱、糖类、无机盐、色素和蛋白质等物质,可以达到很高的浓度。因此,它对细胞的内环境起着调节作用,可以使细胞保持一定的渗透压,保持膨胀的状态。

30、细胞膜的基本骨架是磷脂双分子层;蛋白质分子覆盖在磷脂双分子层外侧、镶嵌在磷脂双分子层两侧、或贯穿磷脂双分子层。

2、信号分子(配体)——受体

细胞膜是包于细胞表面、将细胞与周围环境隔开的弹性薄膜,厚约8~10nm,由脂质和蛋白质构成,故为脂蛋白膜,对于细胞的生命活动和功能具有十分重要的意义。

溶酶体是具有单层膜的囊状结构的细胞器。几乎各种动物细胞内都有溶酶体,在植物细胞内有类似溶酶体的细胞器——圆球体和糊粉粒。在不同的细胞内,溶酶体的数量和形态有很大的差别。

31、细胞质:在细胞膜以内、细胞核以外的原生质,叫做细胞质。细胞质主要包括细胞质基质和细胞器。

信号分子:第一信使:信号传递;第二信使:使信号转换和放大的作用。

细胞膜在许多特定场合可向外形成大量的纤细突起,或向内形成各种形式的内褶(图1-4),

溶酶体内含有很多种水解酶类,能够分解很多种物质,因此有人比喻说溶酶体是细胞内的“酶仓库”、“消化系统”。事实证明,溶酶体对于种子的萌发、卵细胞的受精等多种生理过程都起着积极作用。

32、细胞质基质:细胞质内呈液态的部分是基质。是细胞进行新陈代谢的主要场所。

受体

图1-4 肾近曲小管上皮细胞之基底褶及其中的线粒体

由上述内容可以知道,细胞质基质是活细胞新陈代谢的主要场所。在活细胞完成各种生命活动的过程中,细胞质基质和细胞器是相互协调的,各种细胞器之间也是密切联系的。

33、细胞膜的结构特点是具有一定的流动性;功能特性是选择透过性。

特点:特异性;饱和性;高度的亲和力

以利于其功能活动。相邻细胞的细胞膜之间还可形成闭锁小带、附着小带、桥粒和缝隙连接等各种特化结构,以保持细胞间的联系。此外,新近还发现,在相领细胞膜上有“粘附分子”,对细胞正常结构和联系以及细胞极性的维持和细胞的分化等,均具有重要作用。

(3)细胞核的结构和功能:

34、物质进出细胞膜的方式有三种,

功能:介导物质跨膜运输;信号转导

细胞膜除作为细胞的机械性和化学性屏障外,还具有一系列重要的功能诸如细胞内外的物质交换、细胞运动、细胞识别以及细胞的生长调控、免疫决定和各种表面受体形成等。

真核细胞绝大多数都有细胞核。每个真核细胞通常只有一个细胞核,而有的细胞有2个以上的细胞核。但是,有极少数种类的细胞,却没有细胞核,如哺乳动物的成熟的红细胞。

自由扩散:从高浓度一侧运输到低浓度一侧;不消耗能量。例如:H2O、O2、CO2、甘油、乙醇、苯等。

调节:激活,失敏,减量调节。

细胞的物质交换:细胞内外的物质交换主要以两种方式进行,一为渗透,一为出入胞过程。渗透乃指低分子物质通过细胞膜进出细胞,又可分两种情况:一种是按该物质在细胞内外环境中的浓度差,由浓高的一侧弥散底到低的一侧;另一种则逆浓度差进行,即由浓度低的一侧向浓度高的一侧输送,其经典的例子即Na+和K+的运输,即依靠所谓“钠泵”的作用将Na+移向细胞外隙,而使K+移向细胞内。这种主动运输是一个耗能的过程,并由Na+和K+激活细胞膜上的ATP酶分解ATP而提供所需的能量。因此,如ATP酶受到某些毒物的抑制,则这种主动运输过程也同样受到阻抑。除Na+和K+外,其他一些有机物质如葡萄糖、氨基酸以及一些低分子代谢产物也是借这样的过程运输的。

细胞核的形状,最常见的是圆形、卵形的。细胞核的直径在 7μm左右。

主动运输:从低浓度一侧运输到高浓度一侧;需要载体;需要消耗能量。例如:葡萄糖、氨基酸、无机盐的离子(如K+)。

信号分子有类固醇激素、甲状腺素、NO等。

第二种物质运输方式为出入胞过程。较大的分子和颗粒不能借渗透过程通过细胞膜,乃借出入胞过程将细胞内物质运送到细胞外和将细胞外物质移入细胞内。前者称为出胞,后者称为入胞(endocytosis)。进入细胞的如为液态物质则称之为胞饮或吞饮,如为固体颗粒则称之为吞噬。在吞饮过程中,被吞饮的物质先接触并附着于细胞膜上,然后该处细胞膜连同该物质内凹,继而从细胞膜上断离下来,在胞浆内形成有膜包绕的小泡;吞噬过程与吞饮相似,稍不同的是,被吞噬物附着于细胞膜上后,细胞膜乃形成伪足样突起,将该物质环抱,最后封闭成有膜包绕的泡状结构,从而将该物质移入胞浆内。细胞自身的成分如蛋白质分子、糖原颗料、衰变的或受损而待处理的细胞器等,亦可被膜包绕而形成自噬泡或自噬体。胞饮泡或吞噬泡一般在胞浆内与溶酶体相结合,并被溶酶体酶所降解消化。但胞饮泡也可不经处理而穿过胞浆,最后从细胞的另一极重新移出细胞外。

细胞核的结构:

协助扩散:有载体的协助,能够从高浓度的一边运输到低浓度的一边,这种物质出入细胞的方式叫做协助扩散。如:葡萄糖进入红细胞。

细胞膜上还有特殊的识别区,结合在糖萼上,借此,细胞可相互识别,从而相互接近形成一定的细胞组合,或相互排斥而分离。同样,通过识别区,增生中的细胞在互相接触时就会停止分裂,而癌细胞则已失去这种表面功能,故可不受限制地增生。此外,细胞膜上还有一种膜抗原可以识别“自我”和“非我”。这种膜抗原在器官移植中具有重要意义,因为它可致敏受体,从而引起对移植物的排斥反应。最后,细胞上还有一些特异性区域带着特殊的化学簇,可以接受相应的化学信号,称为膜受体或表面受体。但从形态学上不能辨认。这种膜受体具有十分重要的意义,因为已知许多物质如激素、免疫球蛋白、药物、毒素以及感染因子等都是作为外来信号被受体接受后才转化为细胞内效应而发挥其作用。如封闭其受体,则亦同时消除其作用。

用电子显微镜观察经过固定、染色的有丝分裂间期的真核细胞,可以看到细胞核的主要结构有核膜、核仁和染色质等。

35、主动运输有葡萄糖、氨基酸和无机盐离子。协助扩散有葡萄糖进入红细胞。 神经细胞外的钠离子通过离子通道进入细胞内也是协助扩散。

细胞膜的病变

核膜 核膜包围在细胞核的外面,由内外两层膜构成,把细胞质与核内的物质分开。在核膜上有许多小孔,叫做核孔。核孔是细胞核和细胞质之间进行物质交换的孔道。大分子物质可以自由通过核孔而进入细胞质内,如细胞核内的信使RNA。

36、线粒体:呈粒状、棒状,普遍存在于动、植物细胞中,内有少量DNA和RNA内膜突起形成嵴,内膜、基质和基粒中有许多种与有氧呼吸有关的酶。

1.细胞膜形态结构的改变 机械力的作用或细胞强烈变形,可引起红细胞膜的破损,如人工心瓣膜可引起细胞膜的破裂;某些脂溶性阴离子物质、溶蛋白和溶脂性酶以及毒素等也能破坏细胞膜的完整性。细胞膜结构的损伤可导致细胞内容物的外溢或水分进入细胞使细胞肿胀。

离子和比较小的分子,可以通透核膜,如氨基酸和葡萄糖。在核膜上有大量的多种的酶,这有利于各种化学反应的顺利进行。

37、线粒体是细胞进行有氧呼吸的主要场所, 健那绿染液是专一性染线粒体的活体染色剂。

2.细胞膜通透性的改变 能量代谢不足或毒物的直接损害等所致各种不同的细胞损伤时,均可造成细胞主动运输的障碍,从而导致细胞内Na+的潴留和K+的排出,但Na+的潴留多于K+的排出,使细胞内渗透压升高,水分因而进入细胞,引起细胞水肿。这种单纯的通透性障碍时并不见细胞膜的形态学改变,只有借细胞化学方法才可在电镜下检见细胞膜上某些酶活性的改变。当然,如损伤或水肿严重,则亦可发生继发性形态改变如出现肿浆膨出、微绒毛变短甚至消失、细胞膜基底变平乃至细胞膜破裂等。在某些较严重的损伤时还可出现细胞膜的螺旋状或同心圆层状卷曲,形成典型的髓鞘样结构

核仁在大多数真核细胞间期细胞核内,核仁是最显著的结构,因为它的折光性较强,与细胞的其他结构很容易区分。核仁通常是匀质的球形小体,在细胞有丝分裂过程中,核仁周期性地消失和重建。

38、叶绿体含有叶绿素和类胡萝卜素,还有少量DNA和RNA,叶绿素分布在基粒片层的膜上。酶分布在片层结构的膜上和叶绿体内的基质中。

图1-5 髓鞘样结构

染色质这个名词最早在 1882年提出,主要是指细胞核内容易被洋红或苏木精等碱性染料染成深色的物质,因此叫做染色质。染色质主要由DNA和蛋白质组成。

39、观察细胞质的流动和叶绿体可选用黑藻,黑藻是高等植物有根茎叶分化。

三、内质网

在分裂间期细胞核中,染色质呈细长的丝状,并且交织成网状,这是细胞间期遗传物质存在的特定形态。当细胞进入分裂期时,每条染色质细丝就高度螺旋化,缩短变粗,成为一条圆柱状或杆状的染色体,这是细胞分裂期遗传物质存在的特定形态。因此,染色质和染色体是同一种物质在不同时期细胞中的两种形态。

40、菠菜叶下表皮有保卫细胞围成的气孔,保卫细胞内含有叶绿体。但是上下表皮细胞都没有叶绿体。

除红细胞外,内质网或多或少地见于所有各种细胞。内质网为由生物膜构成的互相通连的片层隙状或小管状系统,膜片间的隙状空间称为池,通常与细胞外隙和细胞浆基质之间不直接相通。这种细胞内的膜性管道系系一方面构成细胞内物质运输的通路,另方面为细胞内各种各样的酶反应提供广阔的反应面积。内质网与高尔基体及核膜相连续。

细胞核的主要功能:

41、内质网:由膜结构连接而成的网状物。功能:增大细胞内的膜面积,使膜上的各种酶为生命活动的各种化学反应的正常进行,创造了有利条件。

粗面内质网

细胞核是遗传物质储存和复制的场所,是细胞遗传性和细胞代谢活动的控制中心,因此,它是细胞结构中最重要的部分。

42、高尔基体:由扁平囊泡、小囊泡和大囊泡组成,为单层膜结构,在植物细胞中与细胞壁的形成有关,在动物细胞中与分泌物的形成有关,并有运输作用。

在病理状态下,粗面内质网可发生量和形态的改变。在蛋白质合成及分泌活性高的细胞以及细胞再生和病毒感染时,粗面内质网增多。粗面肉质岗的含量高低也常反映肿瘤细胞的分化程度。相反,在萎缩的细胞以及有某种物质贮积的细胞,其粗面内质网则萎缩、减少。当细胞受损时,粗面内质网上的核蛋白体往往脱落于胞浆内,粗面内质网的蛋白合成乃下降或消失;当损伤恢复时,其蛋白合成也随之恢复。

大量科学实验表明:凡是无核的细胞,既不能生长也不能分裂,如成熟的红细胞。人工去核的细胞,一般存活不久。例如变形虫去除细胞核以后,新陈代谢减弱,运动停止,当重新移入细胞核后,又能够恢复生命活动。由此可见,细胞核在细胞生命活动中起着决定性的重要作用。

43、中心体:每个中心体含两个中心粒,呈垂直排列,存在动物细胞和低等植物细胞,位于细胞核附近的细胞质中,与细胞的有丝分裂有关。胞内酶合成需要核糖体不全是内质网上的核糖体,需要的大多数是游离在细胞质上的核糖体。一般合成胞内酶只要游离核糖体→高尔基体加工就成了,线粒体供能。

在由各种原因引起的细胞变性和坏死过程中,粗面内质网的池一般出现扩张,较轻的和局限性的扩张只有在电镜下才能窥见,重度扩张时则在光学显微镜下可表现为空泡形成,电镜下有时可见其中含有中等电子密度的絮状物。在较强的扩张时,粗面内质网同时互相离散,膜上的颗粒呈不同程度的脱失。进而内质网本身可断裂成大小不等的片段和大小泡。这些改变大多见于细胞水肿时,故病变不仅见于内质网,也同时累及Golgi器、线粒体和胞浆基质,有时甚至还累及溶解体。

44、溶酶体是消化车间。分离各种细胞器的方法是差速离心法。

图1-6肝细胞粗面内质网扩张

45、液泡:是细胞质中的泡状结构,表面有液泡膜,液泡内有细胞液。化学成分:有机酸、生物碱、糖类、蛋白质、无机盐、色素等。

光面内质网

46、液泡内的色素有花青素,细胞液呈酸性则偏红,细胞液呈碱性则偏蓝,从而影响植物的花色。

光面内质网的功能多种多样,即参与糖原的合成,又能合成磷脂、糖脂以及糖蛋白中的糖成分,此外,还在甾类化合物的合成中起重要的作用,故在合成甾类激素的细胞中特别丰富。光面内质网含有脱甲基酶、脱羧酶、脱氨酶、葡糖醛酸酶以及混合功能氧化酶等,因而光面内质网能分解甾体、能灭活药物和毒物并使其能被排除。肠上皮细胞的光面内质网参与脂肪的运输,心肌细胞的光面内质网则参与心肌的刺激传导。

47、液泡内的色素与叶绿体色素成分和功能均不相同。

在生理状态下,随着细胞功能的升降,光面内质网的数量也呈现相应改变。但亦可出现完全相反的情况,例如在某些疾病时,从形态结构上看,肝细胞光面内质网显著增生,但其混合功能氧化酶的活性反而下降,这实际上是细胞衰竭的表现。

48、液泡有维持细胞形态、储存养料、调节细胞渗透吸水的作用。

肝细胞的光面内质网具有生物转化作用,能对一些低分子物质如药物、毒品、毒物等,进行转化解毒,并将间接胆红素转化为直接胆红素。

49、与胰岛素合成、运输、分泌有关的细胞器是:核糖体、内质网、高尔基体、线粒体。

许多成瘾药物和嗜好品如巴比妥类、吸毒、嗜酒等,可导致肝细胞光面内质网的增生,长期服用口服避孕药、安眠药、抗糖尿病药等也能导致同样后果。在HBsAg阳性肝炎时,肝细胞内光面内质网明显增生,在其管道内形成HBsAg。由于光面内质网的大量增生,这种肝细胞在光学显微镜下呈毛玻璃外观,故有毛玻璃细胞之称,并可为地衣红着染。

50、在真核细胞中,具有双层膜结构的细胞器是:叶绿体、线粒体;具有单层膜结构的细胞器是:内质网、高尔基体、液泡;不具膜结构的是:中心体、核糖体。细胞核的核膜是双层膜,细胞膜是单层膜,但它们都不是细胞器。

在细胞损伤时光面内质网也可出现小管裂解为小泡或扩大为大泡状。在药物及某些芳香族化合物的影响下,光面内质网有时可在胞浆内形成葱皮样层状结构,即“副核”,可为细胞的适应性反应或为变性性改变。

51、植物细胞有细胞壁和叶绿体,而动物细胞没有,成熟的植物细胞有明显的液泡,而动物细胞中没有液泡;在低等植物和动物细胞中有中心体,而高等植物细胞则没有。

图1-7 肝细胞光面内质网增生伴轻度扩大

52、与碱基互补配对有关的细胞器有核糖体、叶绿体、线粒体。

四、线粒体

53、含有 DNA 的细胞器有叶绿体和线粒体。

线粒体是细胞内主要的能量形成所在,故不论在生理上或病理上都具有十分重要的意义。

54、含有 RNA 的细胞结构有叶绿体、线粒体和核糖体。

线粒体为线状、长杆状、卵圆形或圆形小体,外被双层界膜。外界膜平滑,内界膜则折成长短不等的嵴并附有基粒。内外界膜之间为线粒体的外室,与嵴内隙相连,内界膜内侧为内室。在合成甾类激素的内分泌细胞,线粒体嵴呈小管状。内外界膜的通透性不同,外界膜的通透性高,可容许多种物质通过,而内界膜则构成明显的通透屏障,使一些物质如蔗糖和NADH全然不能通过,而其他物质如Na+ 和Ca 2+等也只有借助于主动运输才能通过。线粒体的基质含有电子致密的无结构颗粒,与二价阳离子如Ca2+及Mg2+具有高度亲和力。基质中进行着β氧化、氧化脱羧、枸橼酸循环以及尿素循环等过程。在线粒体的外界膜内含有单胺氧化酶以及糖和脂质代谢的各种转移酶;在内界膜上则为呼吸链和氧化磷酸化的酶类。

55、与细胞的能量转换有关的细胞器有线粒体、叶绿体。

线粒体是对各种损伤最为敏感的细胞器之一。在细胞损伤时最常见的病理改变可概括为线粒体数量、大小和结构的改变:

56、细胞器膜和细胞膜、核膜等结构,共同构成细胞的生物膜系统。在细胞与外部环境进行物质运输、能量转换和信息传递的过程中起着决定性作用。

1.数量的改变 线粒体的平均寿命约为10天。衰亡的线粒体可通过保留的线粒体直接分裂为二予以补充。在病理状态下,线粒体的增生实际上是对慢性非特异性细胞损伤的适应性反应或细胞功能升高的表现。例如心瓣膜病时的心肌线粒体、周围血液循环障碍伴间歇性跛行时的骨骼肌线粒体的呈增生现象。

57、生物膜的组成成分和结构很相似,在结构和功能上紧密联系。

线粒体数量减少则见于急性细胞损伤时线粒体崩解或自溶的情况下,持续约15分钟。慢性损伤时由于线粒体逐渐增生,故一般不见线粒体减少。此外,线粒体的减少也是细胞未成熟和去分化的表现。

58、原核生物没有生物膜系统,但有生物膜。

2.大小改变 细胞损伤时最常见的改变为线粒体肿大。根据线粒体的受累部位可分为基质型肿胀和嵴型肿胀二种类型,而以前者为常见。基质型肿胀时线粒体变大变圆,基质变浅、嵴变短变少甚至消失。在极度肿胀时,线粒体可转化为小空泡状结构。此型肿胀为细胞水肿的部分改变。光学显微镜下所谓的浊肿细胞中所见的细颗粒即肿大的线粒体。嵴型肿较少见,此时的肿胀局限于嵴内隙,使扁平的嵴变成烧瓶状乃至空泡状,而基质则更显得致密。嵴型肿胀一般为可复性,但当膜的损伤加重时,可经过混合型而过渡为基质型。

59、细胞核是遗传信息库,是细胞代谢和遗传的控制中心。

线粒体为对损伤极为敏感的细胞器,其肿胀可由多种损伤因子引起,其中最常见的为缺氧;此外,微生物毒素、各种毒物、射线以及渗透压改变等亦可引起。但轻度肿大有时可能为其功能升高的表现,较明显的肿胀则恒为细胞受损的表现。但只要损伤不过重、损伤因子的作用不过长,肿胀仍可恢复。

60、模型的形式包括物理模型、概念模型、数学模型等。

线粒体的增大有时是器官功能负荷增加引起的适应性肥大,此时线粒体的数量也常增多,例如见于器官肥大时。反之,器官萎缩时,线粒体则缩小、变少。

61、植物细胞的外面有细胞壁,主要化学成分是纤维素和果胶,其作用是支持和保护。其性质是全透的。

图1-8 心肌细胞线粒体

62、细菌细胞壁的成分是糖类与蛋白质结合而成的化合物肽聚糖。

图1-9 线粒体肿

63、常用纤维素酶和果胶酶除去植物细胞壁。

图1-10肾小管上皮细胞线粒体部分空泡变

64、线粒体、叶绿体内的 DNA 不与蛋白质结合形成染色体。

图1-11 线粒体肿胀空泡变

65、进行有氧呼吸的细胞不一定要有线粒体,例如进行有氧呼吸的细菌。硝化细菌、大肠杆菌。

3.结构的改变 线粒体嵴是能量代谢的明显指征,但嵴的增多未必均伴有呼吸链酶的增加。嵴的膜和酶平行增多反映细胞的功能负荷加重,为一种适应状态的表现;反之,如嵴的膜和酶的增多不相平行,则是胞浆适应功能障碍的表现,此时细胞功能并不升高。

66、叶绿体是真核细胞内进行光合作用的唯一场所。

在急性细胞损伤时,线粒体的嵴被破坏;慢性亚致死性细胞损伤或营养缺乏时,线粒体的蛋白合成受障,以致线粒体几乎不再能形成新的嵴。

67、进行光合作用的细胞不一定有叶绿体,例如蓝藻属于原核生物,能进行光合作用,没有叶绿体。

根据细胞损伤的种类和性质,可在线粒体基质或嵴内形成病理性包含物。这些包含物有的呈晶形或副晶形,如在线粒体性肌病或进行性肌营养不良时所见;有的呈无定形的电子致

68、内质网是由膜连接而成的网状结构,是细胞内蛋白质的合成和加工,以及脂质合成的“车间”。

图1-12 线粒体内晶形包含体

69、高尔基体对来自内质网的蛋白质加工,分类和包装的“车间”及“发送站”。

密物,常见于细胞趋于坏死时,乃线粒体成分崩解的产物,被视为线粒体不可复性损伤的表现。线粒体损伤的另一种常见改变为髓鞘样层状结构的形成,这是线粒体膜损伤的结果。

70、线粒体是细胞的“动力车间”。

衰亡或受损的线粒体,最终由细胞的自噬过程加以处理并最后被溶酶体酶所降解消化。

71、叶绿体是植物细胞的“养料制造车间”和“能量转换站。

五、高尔基体

72、溶酶体(单层膜)“消化车间”。

高尔基体见于一切有核细胞,来自核膜外层,由数列弯曲成蹄铁状的扁平囊组成,在横切面上表现为光面双膜,其末端膨大成烧瓶状。高尔基体面向核的一面称为形成面,由许多与粗面内质网池相连的小泡构成。另一面称为成熟面,由此断下一些较大的泡,内含分泌物。由粗面内质网合成的蛋白质输送到此,经加工装配形成分泌颗粒,分泌到细胞外,例如肝细胞合成的白蛋白和脂蛋白即按此方式形成和输出。此外,细胞本身的酶蛋白如溶酶体的水解酶类也是这样,但却不装配成分泌颗粒和排出细胞外,而是以高尔基小泡的形式输送到各种吞噬体中。高尔基体在形成含糖蛋白的分泌物中、在构成细胞膜及糖萼中,以及在形成结缔组织基质中也均起着重要的作用。

73、核糖体有的附着在内质网上,有的游离分布在细胞质中,是“生产蛋白质的机器”。

高尔基体的病变

74、核糖体的功能受到生长激素的调节。

1.高尔基体肥大 高尔基体肥大见于细胞的分泌物和酶的产生旺盛时。巨噬细胞在吞噬活动旺盛时,可见形成许多吞噬体、高尔基复合物增多并从其上断下许多高尔基小泡。

75、游离核糖体合成的蛋白质主要是胞内蛋白,附着在内质网上的核糖体合成的主要是胞外蛋白(分泌蛋白)。

2.高尔基体萎缩 在各种细胞萎缩时可见高尔基体变小和部分消失。

76、核膜:控制物质的进出细胞核。核膜是和内质网膜相连的,便于物质的运输;在核膜上有许多酶的存在,有利于各种化学反应的进行。

3.高尔基体损伤时大多出现扁平囊的扩张以及扁平囊、大泡和小泡崩解。

77、核孔:在核膜上的不连贯部分;作用:是大分子物质进出细胞核的通道。

六、溶酶体

78、核仁:在细胞周期中呈现有规律的消失(分裂前期)和出现(分裂末期),与某种RNA的合成以及核糖体的形成有关。

溶酶体为细胞浆内由单层脂蛋白膜包绕的内含一系列酸性水解酶的小体。形态学上只有联合运用电镜和细胞化学方法才能肯定地加以确认。但是在胞浆中有一系列来源不同的小体符合这一定义,故可将溶酶体区分为以下不同的类型。

79、染色质:细胞核中易被碱性染料染成深色的物质。由德国生物学家瓦尔德尔提出来的。组成主要由DNA和蛋白质构成。染色质和染色体是同一种物质在不同时期的细胞中的两种不同形态。

1.初级溶酶体为除水解酶类外不含其他物质并尚未参与细胞内消化过程的溶酶体,例如中性粒细胞中的嗜天青颗粒、嗜酸性细胞中的颗粒以及巨噬细胞和一些其他细胞中的高尔基小泡。

80、细胞核的功能:是遗传物质储存和复制的场所;是细胞遗传特性和代谢中心活动的控制中心。细胞既是生物体结构的基本单位,也是生物体代谢和遗传的基本单位。

图1-13 初级溶酶体

81、能产生水的细胞器有线粒体、核糖体。(此外还有叶绿体和高尔基体)。

图中央及中下方之卵圆形电子致密小体,外围单层包膜。

82、与多糖合成直接相关的细胞器,线粒体供能;叶绿体合成淀粉,高尔基体合成纤维素;内质网参与合成糖原。

2.次级溶酶体为除溶酶体的水解酶外尚含有其他外源性或内源性物质并已参与细胞内消化过程的溶酶体,亦即含有溶酶体酶的各种噬体,因而称为吞噬溶酶体,乃由吞噬体与初级或次级溶酶体融合而成。

学生物来高思,高思报课电话:010-56639540

溶酶体是极为重要的细胞器,能与细胞的一系列生物功能和无数的物质代谢过程。因此,其功能障碍将导致细胞的病理改变,从而在许多疾病的发病机制中具有重要意义。

溶酶体的病变

1.溶酶体的病理性 贮积过程在某些病理情况下,一些内源性或外源性物质可在溶酶体内贮积,使病酶体增大和数目增多。

图1-14 肝细胞内次级溶酶体

贮存在溶酶体中的物质被溶酶体酶加以降解。但有时进入细胞的物质为量过多,超过了溶酶体的处理能力,于是乃在细胞内贮积,例如各种原因引起的蛋白尿时可在肾近曲小管上皮细胞中见到玻璃滴状蛋白质的贮积。在电镜下可见这种玻璃样小滴乃载有蛋白质的增大的溶酶体,故实质上这往往是细胞功能增强的表现,与真正的变性有所不同。

一些在正常情况下可被消化的物质如糖原和粘多糖等,当溶酶体有先天性酶缺陷时,也能在溶酶体中堆积,如Ⅱ型糖原贮积病病。

2.溶酶体在细胞自溶过程中的作用 溶酶体因含有许多种水解酶,故在细胞的自溶过程中起着重要的作用。在溶酶体膜损伤及通透性升高时,水解酶逸出,引起广泛的细胞自溶。这就是活体内细胞坏死和机体死后自溶的主要过程。在此过程中,受损细胞的大分子成分被水解酶分解为小分子物质。

比细胞的广泛坏死或自溶更为重要的是溶酶体在细胞的局灶性坏死中所起的作用。此时在胞浆内形成自噬泡,在与溶酶体结合形成自噬溶酶体。如水解酶不能将其中的结构彻底消化溶解,则自噬溶酶体乃常转化为细胞内的残存小体,如某些长寿细胞中的脂褐素。

3.溶酶体在细胞间质损伤中的作用 当溶酶体酶释放到细胞间质中时,同样发挥其酶解破坏作用。这在诸类风湿性关节炎等炎症过程和肿瘤细胞侵入血管的过程中具有重要意义。但溶酶体酶逸出溶酶体进入细胞间隙的机制尚不十分清楚,可能由于溶酶体膜和细胞的失稳或通过出胞过程而实现的。因此,临床上可用溶酶体膜稳定剂治疗有关疾病。

图1-15 肝细胞内脂褐素颗粒残存小体即终末溶酶体

七、过氧化

过氧化为胞浆中由单层界膜包绕的另一类小体,直径为0.5~1μm,形态与细胞化学特性均不同于溶酶体。小体基质电子密度中等,中央大多含有一电子密度较大的有时呈晶状的核芯。此小体不含水解酶而含有若干种氧化酶,还有大量呈过氧化作用的触酶,被视为过氧体的标志酶。过氧体的功能至今尚不甚清楚,看来可能与糖原异生和分解有害于细胞的H2O2及脂质代谢有关。

过氧体的病变

在人体病理学方面关于过氧体的病变知之尚少。

1.过氧体增多 动物实验中,在切除甲状腺、给予皮质激素或氨基水杨酸后以及在实验性致癌过程中,可见过氧体增多。在人体的某些病理过程如某些炎症及慢性酒精中毒等时也可见到过氧体增多现象。

2.过氧体减少或缺如 在较罕见的脑肝肾综合症时,曾见到过氧体缺如的现象,但其病理意义尚不清楚。

3.微过氧体 为一组同样含有过氧化物酶和触酶的小体,但远较过氧化为小,不含核芯结构,与光面内质网相连。因此被认为是光面内质网的特化部分及过氧体的前身,其作用尚未查明。

八、细胞骨架

细胞骨架乃胞浆中一组由纤维状结构组成的网架,具有支撑和维持细胞形态及细胞运动的功能。迄今已知的成分有微丝、微管和中间丝3种。微丝粗约6nm,根据其生化和免疫细胞化学特性实属肌动蛋白细丝;微管为直径约20~26nm的长度不一的小管,管壁由13根纵列的原丝构成;中间丝的直径在微丝和微管之间故名。

细胞骨架中的中间丝化学性质各异,在不同细胞由不同的蛋白质和多肽组成:在上皮细胞为前角蛋白或细胞角蛋白,在间叶性细胞为波形蛋白,在神经细胞为神经原丝,在肌细胞为桥连蛋白,在神经胶质细胞为胶质纤维酸性蛋白。 由于这些不同种类不同性质的中间丝在细胞转化为肿瘤细胞时,仍不改变其化学和抗原特异性,故可利用这种特性借助免疫细胞化学方法,对肿瘤进行分类和鉴别诊断。

关于细胞骨架在细胞损伤时的改变,所知不多,但早已知道秋水仙碱能抑制微管形成,引起有丝分裂障碍;通过对微管(可能还有微?

郑重声明:本文版权归大赢家比分所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。