http://www.orangetekint.com

激素对物质代谢的调节,细胞通讯与细胞信号转导

内分泌系统是由内分泌腺和分解存在于某些组织器官中的内分泌细胞组成的一个体内信息传递系统,它与神经系统密切联系,相互配合,共同调节机体的各种功能活动,维持内环境相对稳定。

细胞的物质代谢反应不仅受到局部环镜的影响,即各种代谢底物、产物的正、负反馈调节,而且还受来自于机体其它组织器官的各种化学信号的控制,激素就属于这类化学信号。激素是一类由特殊的细胞合成并分泌的化学物质,它随血液循环于全身,作用于特定的组织或细胞(称为靶组织或靶细胞,target cell),指导细胞物质代谢沿着一定的方向进行。同一激素可以使某些代谢反应加强,而使另一些代谢反应减弱,从而适应整体的需要。对于每一个细胞来说,激素是外源性调控信号,而对于机体整体而言,它仍然属于内环境的一部分。通过激素来控制物质代谢是高等动物体内代谢调节的一种重要方式。

核心提示:胞内受体通常为单体蛋白,含400-1000个氨基酸残基,分为四个功能区域: 二、受体作用的特点 1.高度的亲和力:胞内受体通常为单体蛋白,含400-1000个氨基酸残基,分为四个功能区域:

不论是单细胞生物或组成多细胞有机体的每一个细胞,在它们的生命过程中,都会不断受到来自外部环境的各种理化因素的影响。在多细胞动物,由于绝大多数细胞是生活在直接浸浴它们的细胞外液、即内环境之中,因此出现在内环境中的各种化学分子,是它们最常能感受到的外来刺激:这不仅是指存在于细胞外液中的激素或其他体液性调节因子;而且就是在神经调节过程中,当神经信息由一个神经元向其他神经元传递或由神经元传给它的效应器细胞时,在绝大多数情况下,也都要通过一种或多种神经递质和调质为中介,通过这些化学分子在距离极小的突触间隙液中的扩散,才能作用到下一级神经元或效应器细胞。尽管激素和递质等分子作为化学信号在细胞外液中播散的距离和范围有所不同,但对接受它们影响的靶细胞并不存在本质的差别。

人体内主要的内分泌腺有垂体、甲状腺、甲状旁腺、肾上腺、胰岛、性腺、松果体和胸腺;散在于组织器官中的内分泌细胞比较广泛,如消化首粘膜、心、肾、肺、皮肤、胎盘等部位均存在于各种各样的内分泌细胞;此外,在中枢神经系统内,特别是下丘存在兼有内分泌功能的神经细胞。由内分泌腺或散在内分泌细胞所分泌的高效能的生物活性物质,经组织液或血液传递而发挥其调节作用,此种化学物质称为激素。

激素的作用必须通过其受体来实现。受体是一类可以与相应的配体(ligand)特异地结合的物质,常为糖蛋白或脂蛋白。激素作为一类配体,与受体的结合具有高度的特异性和亲和性。只有那些具有相应受体的细胞才可以成为该激素的靶细胞。

二、受体作用的特点 1.高度的亲和力:激素及细胞因子等配体与其受体的结合具有高度亲和力。通常用其解离常数来表示其亲和力的大小,多数配体与受体的解离常数为10-11~10-9

细胞外液中的各种化学分子,并不需要自身进入它们的靶细胞后才能起作用它们大多数是选择性地同靶细胞膜上具有特异的受体性结构相结合,再通过跨膜信号传递或跨膜信号转换过程,最后才间接地引起靶细胞膜的电变化或其他细胞内功能的改变。

随着内分泌研究的发展,关于激素传递方式的认识逐步深入。大多数激素经血液运输至远距离的靶细胞而发挥作用,这种方式称为远距分泌;某些激素可不经血液运输,仅由组织液扩散而作用于邻近细胞,这种方式称为旁分泌(paracrine);如果内分泌细胞所分泌的激素在局部扩散而又返回作用于该内分泌细胞而发挥反馈作用,这种方式称为自分泌(autocrine)。另外,下丘脑有许多具有内分泌功能的神经细胞,这类细胞既能产生和传导神经冲动,又能合成和释放激素,故称神经内分泌细胞,它们产生的激素称为神经激素(neurohormone)。神经激素可沿神经细胞轴突借轴浆流动运送至末梢而释放,这种方式称为神经分泌(neurocrine)。

在糖、脂类和氨基酸代谢过程中,具有重要调节作用的激素-胰岛素、肾上腺素和胰高血糖素等(具体作用见代谢各章)均为水溶性物质,因此不能进入细胞内。但这类激素的受体均存在于细胞膜表面,那么它们是如何通过与细胞膜表面受体结合,将位于胞外的化学信号传递至胞内,又是如何引起细胞内各种代谢过程的改变的呢?这里以肾上腺素为例做一简要说明。

2.高度的特异性:指一种激素或细胞因子只能选择性与相应的受体结合的性质。其原因即在于配体通过具有特定结构的部位与受体上的特定结合部位相结合。

机体和细胞也可能受到化学信号以外的其他性质的刺激,如机械的、电的和一定波长电磁波等来自外界环境的刺激的影响;但在动物进化的过程中,这些刺激信号大都由一些在结构和功能上高度分化了的特殊的感受器细胞来感受,引起相应的感受器细胞出现某种电反应。仔细分析各种感受器细胞接受它们所能感受的某种特异刺激信号的过程时发现,它们也涉及到外来刺激信号的跨膜传递,即刺激信号也要先作用于膜结构中的感受性结构,才能引起感受器细胞的电变化和随后的传入神经冲动。

图11-1 激素的递送方式

图9-5 CAMP的结构和代谢

3.可逆性:配体与受体通常通过非共价键而结合,因此可以采用简单的方法将二者分离开。4.可饱和性:由于存在于细胞膜上或细胞内的受体数目是一定的,因此配体与受体的结合也是可以饱和的。当全部受体被配体占据以后,就可使其效应达到最大。5.特定的作用模式:在不同细胞中,受体的种类和含量分布均不同,表现为特定的作用模式。 三、受体活性的调节 受体的数目或与配体的结合能力是可以改变的。如果受体的数目增加或与配体的结合能力提高,则称为向上调节(up regulation);反之,则称为向下调节(down regulation)。

不论是化学信号中的激素分子和递质分子,以及非化学性的外界刺激信号,当它们作用于相应的靶细胞时,都是通过为数不多、作用形式也较为类似的途径来完成跨膜信号传递的;这些过程所涉及的膜蛋白质也为数不多,在生物合成上由几类特定基因家族所编码;正因为如此,由每个特定基因家族所表达生成的蛋白质分子,在肽链的氨基酸排列顺序上有较大的相同性,功能上也较为类似。因此,关于跨膜信号传递的研究,早已超出了递质或激素作用机制的范畴,成为细胞生理学中一个有普遍意义的新篇章。试想,人体细胞都具有相同的遗传基因,因而一个感光细胞或一个普通体细胞,通过细胞膜上类似的蛋白质,以类似的方式接受它们所受到的外来刺激,可引起细胞本身功能的改变;而且各种不同的细胞通过少数几类膜蛋白质和几种作用方式,就能接受多种多样可能遇到的外界刺激信号的影响,显然符合“生物经济”的原则。

一、激素的分类

(一)cAMP是激素在细胞内的信使

影响受体活性的因素主要有:1.受体的修饰:如磷酸化或脱磷酸化修饰。2.膜磷脂代谢的影响:质膜脑磷脂被甲基化为卵磷脂后,可明显增强某些受体的活性。3. 受体的内在化:受体与配体结合后,可被内吞入细胞,然后被溶酶体所降解。4. 受体的二聚化:受体与配体结合后,形成聚合体,降低与配体的结合能力。5. G蛋白的调节:活化后的G蛋白影响受体与配体的结合能力。 信息的转导途径STransduction Pathways of Signal一、膜受体介导的信息转导 1.信号转导途径的组成:胞外信息分子膜受体G蛋白腺苷酸环化酶 第二信使-cAMP蛋白激酶A cAMP信号途径通过调节cAMP的浓度,将细胞外信号转变为细胞内信号。主要组分:①激活型受体或抑制型受体;②活化型调节蛋白或抑制型调节蛋白;

一、由具有特异感受结构的通道蛋白质完成的跨膜信号传递化学门控通道

激素的种类繁多,来源复杂,按其化学性质可分为两大类:

五十年代初期,Sutherland在实验中发现,肝细胞组织切片若加入肾上腺素,可以加速肝糖原分解为葡萄糖;测定磷酸化酶(分解肝糖元的酶),发现其活性增加。因此他认为,磷酸化酶是肝糖元分解的限速酶,肾上腺素能激活此酶。但是,若用纯化的磷酸化酶与肾上腺素一起温育,后者对酶则没有激活作用。由此提示,肾上腺素激活磷酸化酶是一间接过程,需要肝细胞中其它物质的协助。进一步对肝匀浆做试验,若其中加入ATP、Mg++及肾上腺素,则磷酸化酶又可被激活。若只取肝匀浆离心后的上清液,则不能观察到肾上腺素的这种激活作用;只有再加入沉淀中的细胞膜,激活效应才又恢复。这一实验表明,肾上腺素对磷酸化酶的激活至少需要两种以上的因素。后来的实验证实,肾上腺素首先作用于细胞膜,使膜上的腺苷酸环化酶活化,后者使细胞内ATP在Mg2+的存在下转变为cAMP,而cAMP可再使胞浆中的磷酸化酶b转变为磷酸化酶a。由于肾上腺素并不进入细胞,其作用是通过细胞内cAMP传递的,因此将cAMP称为细胞内信使(Intracellular Messenger)。

⑴ 胞外信息分子及其受体:通过这一途径传递信号的第一信使主要有儿茶酚胺类激素、胰高血糖素、腺垂体的激素、下丘脑激素、甲状旁腺素、降钙素、前列腺素等。 参与这一信息转导途径的受体大部分为G蛋白偶联型膜受体。G蛋白偶联型受体

对这种跨膜信号的传递方式的研究,最早是从对运动神经纤维末梢释放的乙酰胆碱如何引起它所支配的骨骼肌细胞兴奋的研究开始的。早已知道,当神经冲动到达神经末梢处时,先是由末梢释放一定数量的Ach分子,后者再同肌细胞膜上称为终板处的“受体”相结合,引起终板膜产生电变化,最后引起整个肌细胞的兴奋和收缩。由于神经-肌接头处的“受体”也可同烟碱相结合,因而过去在药理学分类中称它为N-型Ach受体。80年代后期,我国学者李镇源发现α-银环蛇毒同N-型受体有极高的特异性结合能力又有人发现一些电鱼的电器官中有密集的这种受体蛋白质分子存在;再依靠70年代以来蛋白质化学和分子生物学技术的迅速发展,目前不仅已将这种蛋白质分子提纯,而且基本上搞清了它的分子结构和它们在膜中的存在形式。原来它是由4种不同的亚单位组成的5聚体蛋白质,总分子量约为290kd;每种亚单位都由一种mRNA编码,所生成的亚单位在膜结构中通过氢键等非共价键式的相互吸引,形成一个结构为α2βγδ的梅花状通道样结构,而其中的两个α-亚单位正是同两分子ACH相结合的部位,这种结合可引起通道结构的开放,其几何大小足以使终板膜外高浓度的Na+内流,同时也能使膜内高浓度的K+外流结果是使原来存在两侧的静息电位近于消失,亦即使该处膜内外电位差接近于0值,这就是终板电位,于是完成了Ach这种化学信号的跨膜传递,因为肌细胞后来出现的兴奋和收缩都是以终板电位为起因的。

含氮激素

cAMP广泛存在于生物界,但其在正常细胞中的含量甚微,仅为0.1μM,在激素作用下,可升高约100倍。细胞中cAMP的浓度除了与催化cAMP生成的腺苷酸环化酶有关外,还受到催化cAMP分解的磷酸二酯酶的控制(见图9-5)。

⑵ G蛋白及其效应酶:参与这一途径的G蛋白主要是两类,即激活型G蛋白和抑制型G蛋白。G蛋白的效应酶主要是腺苷酸环化酶,可催化第二信使cAMP的产生,从而将胞外的信号传递到细胞内。

图2-7 N-型Ach门控通道的分子结构示意图

1.肽类和蛋白质激素 主要有下丘脑调节肽、神经垂体激素、腺垂体激素、胰岛素、甲状旁腺激素、降钙素以及胃肠激素等。

有许多药物能抑制磷酸二酯酶的活性,如甲基黄嘌呤(包括茶碱、氨茶碱和咖啡因等)。二丁基?cAMP不易被磷酸二酯酶水解,同时又能抑制此酶活性,故有提高cAMP水平的作用。

Gs调节模型:激素与Rs结合,Rs构象改变,与Gs结合,Gs的α亚基排斥GDP,结合GTP而活化,Gs解离出α和βγ。α亚基活化腺苷酸环化酶,将ATP转化为cAMP。βγ亚基复合物也可直接激活某些胞内靶分子。霍乱毒素能催化ADP核糖基共价结合到Gs的α亚基上,使α亚基丧失GTP酶的活性,处于持续活化状态。导致霍乱病患者细胞内Na+和水持续外流,产生严重腹泻而脱水。

A:N-型Ach门控通的5个亚单位和它们所含α-螺旋在膜中存在形式的平面示意图

2.胺类激素 包括肾上腺素、去甲肾上腺素和甲状腺激素。

激素中多数激素可使cAMP的生成加速,少数激素则可以降低细胞内cAMP的浓度。大部分肽类激素,包括胰高血糖素、甲状旁腺素、降钙素、抗利尿激素和催产素等以及儿茶酚胺类激素均可通过相应的受体激活靶细胞膜上的腺苷酸环化酶,从而使胞内cAMP的浓度增加。

⑶ 第二信使:第二信使为AC催化生成的cAMP,可被磷酸二酯酶降解为AMP而失活。

B:5个亚单位相互吸引,包绕成一个通道样结构 C:在跨膜通道结构中,各

类固醇激素

现将几种激素对cAMP浓度的影响及其与受体结合后引起的生理效应列表如下:

腺苷酸环化酶:跨膜12次。在Mg2+或Mn2+的存在下,催化ATP生成cAMP。

个亚单位亿含α-螺旋在通道结构中的位置

类固醇激素是由肾上腺皮质和性腺分泌的激素,如皮质醇、醛固酮、雌激素、孕激素以及雄激素等。另外,胆固醇的衍生物枣1,25-二羟维生素D3也被作为激素看待。

表9-3 某些激素对cAMP浓度的影响及其最终生理效应

环腺苷酸磷酸二酯酶cAMP phosphodiesterase, PDE):降解cAMP生成5’-AMP,起终止信号的作用。

用分子生物学实验技术证明,同其他膜结合蛋白质类似,在上述4种不同的亚单位肽链中,都存在有4种主要由20-25个疏水性氨基酸形成的α-螺旋,因而推测每个亚单位的肽链都要反复贯穿膜4次,而5个亚单位又各以其第2个疏水性跨膜α-螺旋构成了水相孔道的“内壁”。

此外,前列腺素广泛存在于许多组织之中,由花生四烯酸转化而成,主要在组织局部释放,可对局部功能活动进行调节,因此可将前列腺看作一组局部激素。

激素靶组织或靶器官cAMP浓度对酶或化学反应的影响最终生理效应肾上腺素肝↑糖原合成酶↓糖原合成↓磷酸化酶↑糖原分解↑脂肪组织↑脂肪酶↑脂肪分解↑心肌、骨骼肌↑磷酸化酶↑糖原分解↑胰高血糖素肝、心肌↑磷酸化酶↑糖原分解↑脂肪组织↑脂肪酶↑脂肪分解↑胰岛β-细胞↑-胰岛素分泌↑促肾上腺皮质激素肾上腺皮质↑胆固醇→孕烯醇酮↑糖皮质激素合成↑脂肪组织↑脂肪酶↑脂肪分解↑促甲状腺激素甲状腺↑磷酸化酶↑糖原分解↑,摄到碘及合成分泌T3、T4↑脂肪组织↑脂肪酶↑脂肪分解↑脂肪组织↓脂肪酶↓脂肪分解↓胰岛素肝、骨骼肌↓磷酸化酶↓糖原分解↓糖原合成酶↑糖原合成↑丙酮酸→磷酸烯醇式丙酮酸↓糖异生↑

⑷蛋白激酶A:这是一种由四个亚基构成的寡聚体。其中有两个亚基为催化亚基,另两个亚基为调节亚基。当调节亚基与cAMP结合后发生变构(每一调节亚基可结合两分子cAMP),与催化亚基解聚,从而激活催化亚基。PKA可促使多种酶或蛋白质丝氨酸或苏氨酸残基的磷酸化,从而酶的催化活性或蛋白质的生理功能。

由上述分子水平的研究成果可以知道,原初将终板膜上完成Ach跨膜信号传递的蛋白质称作“受体”是不符合实际情况的;它们是一种通道样结构,只是在组成通道的蛋白质亚单位中有两个亚单位具有同Ach分子特异地相结合的能力,并能因此引起通道蛋白质的变构作用而使通道开放,然后靠相应离子的易化扩散而完成跨膜信号传递。因此,这种蛋白质应称为N-型Ach门控通道,属于化学门控通道或化学依从性通道中的一种。

表11-1 主要激素及其化学性质

↑代表增高或增强 ↓代表降低或减弱

蛋白激酶A的激活机制

Ach在神经-肌接头处的跨膜信号传递机制的阐明,曾一度错误地推测,其他一些神经递质也都是以类似的方式作用于下一级神经元或相应的效应器细胞的;但后来的研究表明并非如此。目前只证明了一些氨基酸递质,包括谷氨酸、门冬氨酸、γ-氨基丁酸和甘氨酸等,主要是通过同N-型Ach门控通道结构类似的化学门控通道影响其靶细胞。

主要来源激素英文缩写化学性质下丘脑促甲状腺激素释放激素TRH三肽促性腺激素释放激素GnRH十肽生长素释放抑制激素GHRIH十四肽长征素释放激素GHRH四十四肽促肾上腺皮制裁激素释放激素CRH四十一肽促黑激素释放因子MRF肽促黑激素释放抑制因子MIF肽催乳素释放因子PRF肽催乳素释放抑制因子PIF多巴肽升压素VP(ADH)九肽催产素OXT九肽腺垂体促肾上腺皮持激素ACTH三十九肽促甲状素皮质激素TSH糖蛋白卵泡刺激素FSH糖蛋白黄体生长素LH(ICSH)糖 蛋白促黑激素MSH十三肽生长素GH蛋白质催乳素PRL蛋白质甲状腺甲状腺素T4胺类三碘甲腺原氨酸T3胺类甲状腺C细胞降钙素CT三十二肽甲状旁腺甲状旁腺激素PTH蛋白质胰岛胰岛素蛋白质胰高血糖素二十九肽胰多肽三十六肽糖皮质激素类固醇盐皮激素类固醇髓质肾上腺素E胺类去甲肾上腺素NE胺类睾丸:间质细胞睾酮T类固醇支持细胞抑制素糖 蛋白卵巢、胎盘雌二醇E2类固醇雌三醇E3类固醇孕酮P类固醇胎盘绒毛膜促性腺激素CG糖蛋白消化道、脑胃泌素十七肽胆囊收缩素-促胰酶素CCK-PZ三十三肽促胰液素二十七肽心房心房利尿钠肽ANP二十一、二十三肽松果体褪黑素胺类胸腺胸腺激素肽类

激素与其专一性细胞膜受体结合后,是如何激活腺苷酸环化酶的呢?近来有人认为,GTP和GTP调节蛋白即G蛋白,起着介导激素对腺苷酸环化酶激活的作用。当激素与受体结合后,G-蛋白与TP结合,生成GTP-G蛋白复合物,后者能活化腺苷酸环化酶(详见第十二章)。

Gi调节模型①通过α亚基与腺苷酸环化酶结合,直接抑制酶的活性;②通过βγ亚基复合物与游离Gs的α亚基结合,阻断Gs的α亚基对腺苷酸环化酶的活化。百日咳毒素抑制Gi的活性。

电压门控通道

二、激素作用的一般特性

(二)cAMP依赖性蛋白激酶是cAMP的靶分子

Ca2+依赖性信息转导途径1.信息转导途径的组成:胞外信息分子及其受体G蛋白磷脂酶 甘油二酯 和三磷酸肌醇 IP3受体Ca2+钙调蛋白和可变区,分为调节域和催化域。

应用类似的技术,在80年代还陆续克隆出几种重要离子的电压门控通道,它们具有同化学门控能道类似的分子结构,但控制这类通道开放与否的因素,是这些通道所在膜两侧的跨膜电位的改变;也就是说,在这种通道的分子结构中,存在一些对跨膜电位的改变敏感的基团或亚单位,由后者诱发整个信道分子功能状态的改变。

激素虽然种类很多,作用复杂,但它们在对靶组织发挥调节作用的过程中,具有某些共同的特点。

cAMP作为变构剂作用于cAMP依赖性蛋白激酶(cAMP-dependentProtein Kinase A激酶)。这种蛋白激酶由两个亚基组成,一个亚基是催化亚基,具有催化蛋白质磷酸化的作用;另一个亚基是调节亚基,是催化亚基的抑制物。当调节亚基与催化亚基结合时,酶呈无活性状态。cAMP的效应是与调节亚基结合,使后者发生变构而脱离催化亚基,从而使催化亚基进入激活状态(图9-6)。

此信号传递途径与cAMP-蛋白激酶A途径类似,即通过激活鸟苷酸环化酶,催化生成第二信使cGMP,再通过激活蛋白激酶G而传递信息。目前已知心房肽是通过此途径传递信号,可引起血管平滑肌的松弛。 NO可激活GC,从而激活该途径。

在动物界,除了一些特殊的鱼类,一般没有专门感受外界电刺激或电场改变的器官或感受细胞,但在体内有很多细胞,如神经细胞和各种肌细胞,在它们的细胞膜中却具有多种电压门控通道蛋白质,它们可由于同一细胞相邻的膜两侧出现的电位改变而再现通道的开放,并由于随之出现的跨膜离子流而出现这些通道所在膜的特有的跨膜电位改变。例如,前述的终板膜由Ach门控通道开放而出现终板电位时,这个电位改变可使相邻的肌细胞膜中存在的电压门控式Na+通道和K+通道相继激活,出现肌细胞的所谓动作电位;当动作电位在神经纤维膜和肌细胞膜上传导时,也是由于一些电压门控通道被邻近已兴奋的膜的电变化所激活,结果使这些通道所在的膜也相继出现特有的电变化。由此可见,电压门控通道所起的功能,也是一种跨膜信号转换,只不过它们接受的外来刺激信号是电位变化,经过电压门控通道的开闭,再引起细胞膜出现新的电变化或其他细胞内功能变化,后者在Ca2+通道打开引起膜外Ca2+内流时甚为多见。

激素的信息传递使用

图9-6 蛋白激酶的激活过程 C为催化亚基 R为调节亚基

受体-酪氨酸蛋白激酶途径 已知胰岛素和大部分的生长因子经此途径传递信号。

根据对Na+、K+、Ca2+三种离子的电压门控通道蛋白质进行的分子结构分析,发现它们一级结构中的氨基酸排列有相当大的同源性,说明它们属于同一蛋白质家族,与之有关的mRNA在进化上由同一个远祖基因演化而来。图2-8是与体内动作电位(见后)产生至关重要的Na+通道在膜内结构的模式图,它主要由一个较大的α-亚单位组成,分子量约260kd;有时还另有一个或两个小分子量的亚单位,分别称为β1和β2。但Na+通道的主要功能看来只靠α-亚单位即可完成。这个较长的α-单位肽链中包含了4个结构类似的结构域,而每个结构域中又各有6个由疏水性氨基酸组成的跨膜α-螺旋段;这4 个结构域及其所包含的疏水α-螺旋,在膜中包绕成一个通道样结构。现已证明,每个结构域中的第4个跨膜α-螺旋在氨基酸序列上有特点,即每隔两个疏水性氨基酸,就再现一个带正电荷的精氨酸或赖氨酸;这些α-螺旋由于自身的带电性质,在它们所在膜的跨膜电位有改变时会产生位移,因而被认为是该通道结构中感受外来信号的特异结构,由此再诱发通道“闸门”的开放;还有实验提示,每个结构域中的第2、第3个α-螺旋构成了该通道水相孔道的“内壁”;据测算,水相孔道内径最窄处横断面积约为0.3×0.5nm差不多刚能通过一个水化的Na+(图2-8,B)。

内分泌系统与神经系统一样,是机体的生物信息传递系统,但两者的信息传递形式有所不同。神经信息在神经纤维上传输时,以电信号为信息的携带者,在突触或神经-效应器接头外处,电信号要转变为化学信号,而内分泌系统的信息只是把化学的形式,即依靠激素在细胞与细胞之间进入信息传递。不论是哪种激素,它只能对靶细胞的生理化过程起加强或减弱的作用,调节其功能活动。例如,生长素促进生长发育,甲状腺激素增强代谢过程,胰岛素降低血糖等。在这些作用中,激素既不能添加成分,也不能提供能量,仅仅起着“信使”的作用,将生物信息传递给靶组织,发挥增强或减弱靶细胞内原有的生理化生化近程的作用。

活化形式的催化亚基在ATP的作用下,使细胞中的相应底物磷酸化,从而改变这些蛋白质的功能:有些被激活,有些则被抑制。例如,糖原分解过程中的磷酸化酶可在A激酶的作用下被磷酸化而激活(图9-6),而糖原合成酶则在A激酶的作用下被磷酸化而失去活性。总的效应是糖原分解加强和糖原合成的抑制,使血糖浓度升高。

GRB2

图2-8 电压门控Na+通道的分子结构示意图

激素作用的相对特异性

总之,很多多肽和儿茶酚胺类激素的作用是通过下列过程来实现的,即激素与膜受体结合→腺苷酸环化酶活性↑→cAMP水平↑→A激酶被激活→蛋白质发生磷酸化→生理效应发生。

信息转导途径的组成:胞外信息分子,包括一部分生长因子和大部分细胞因子。非催化性受体。JAKs 。信号转导子和转录激动子

A:构成电压门控Na+通道的α-亚单中的4个结构以及每个结构域中6个

激素释放进入血液被运送到全身各个部位,虽然他们与各处的组织、细胞有广泛接触,但有此激素只作用于某些器官、组织和细胞,这称为激素作用的特异性。被激素选择作用的器官、组织和细胞,分别称为靶器官、靶组织和靶细胞。有些激素专一地选择作用于某一内分泌腺体,称为激素的靶腺。激素作用的特异性与靶细胞上存在能与该激素发生特异性结合的受体有关。肽类和蛋白质激素的受体存在于靶细胞膜上,而类固醇激素与甲状腺激素的受体则位于细胞浆或细胞核内。激素与受体相互识别并发生特异性结合,经过细胞内复杂的反应,从而激发出一定的生理效应。有些激素作用的特异性很强,只作用于某一靶腺,如促甲状腺激素只作用于甲状腺,促肾上腺皮质激素只作用于肾上腺皮质,而垂体促性腺激素只作用于性腺等。有些激素没有特定的靶腺,其作用比较广泛,如生长素、甲状腺激素等,它们几乎对全身的组织细胞的代谢过程都发挥调节作用,但是,这些激素也是与细胞的相应受体结合而起作用的。

八十年代中期,对腺苷酸环化酶活化机制的研究导致了另外一种重要的调节蛋白桮蛋白的发现。G蛋白在膜受体和腺苷酸环化酶间具有中介作用。它的发现使我们更为深入地认识了激素的作用机理(详见第十二章)。

促红细胞生成素的信息转导过程

α-螺旋在膜中存在形式平面 ~P表示磷酸化位点

激素的高效能生物放大作用

图9-7 激素调节糖原代谢的连续激活反应

该途径主要与机体防御反应、组织损伤和应激、细胞分化和凋亡以及肿瘤生长抑制有关。NFB通常与胞液中的抑制性蛋白(如IB)结合而形成无活性的复合物;当这些抑制性的蛋白被磷酸化修饰后,其构象发生改变,与NFB分离,从而使NFB活化;活化的NFB进入细胞核,调节特定基因的转录表达。

B:4个结构域及其α-螺旋形成通道时的相对位置

激素在血液中的浓度都很低,一般在纳摩尔,甚至在皮摩尔数量级,虽然激素的含量甚微,但其作用显着,如1mg的甲状腺激素可使机体增加产热量约4200000 J。激素与受体结合后,在细胞内发生一系列酶促放大作用,一个接一个,逐级放大效果,形成一个效能极市制生物放电系统。据估计,一个分子的胰高血糖素使一个分子的腺苷酸环化酶激活后,通过cAMP-蛋白激酶。可激海参10000个分子的磷酸化酶。另外,一个分子的促甲状腺激素释放激素,可使腺垂体释放十万个分子的促甲状腺激素。0.1μg的促肾上腺皮质激素释放激素,可引起腺垂体释放1μg促肾上腺皮持激素,后者能引起肾上腺皮质分泌40μg糖皮质激素,放大了400倍。据此不难理解血中的激素浓度虽低,但其作用却非常明显,所以体液中激素浓度维持相对的稳定,对发挥激素的正常调节作用极为重要。

SMAD最早被证实的TR-Ⅰ激酶的底物,是Drosophila Mother against dpp 和C elegans 两个基因的名字的融合。已克隆出9种SMAD,可将其归结成三大类:受体调节的SMADs ;共同的偶配体SMADs ;抑制性SMADs 。二、胞内受体介导的信息转导 1.信息转导途径的组成:⑴ 第一信使:通过细胞内受体传递信息的第一信使有:①类固醇激素:包括糖皮质激素、雌激素、孕激素、雄激素、盐皮质激素等。 ②维生素:1,25-2D3、视黄酸。③甲状腺激素:三碘甲腺原氨酸和四碘甲腺原氨酸。

机械门控通道

激素间的相互作用

⑵ 胞内受体:存在于细胞液或细胞核内,通常为单纯蛋白质。在与相应的配体结合以后,受体被活化而发生核转位,作为转录因子调控特异基因的表达。

体内存在不少能感受机械性刺激并引致细胞功能改变的细胞。如内耳毛细胞顶部的听毛在受到切和力的作用产生弯曲时,毛细胞会出现暂短的感受器电位,这也是一种跨膜信号转换,即外来机械性信号通过某种结构内的过程,引起细胞的跨膜电位变化。据精细观察,从听毛受力而致听毛根部所在膜的变形,到该处膜出现跨膜离子移动之间,只有极短的潜伏期,因而推测可能是膜的局部变形或牵引,直接激活了附近膜中的机械门控通道。

当多种激素共同参与某一生理活动的调节时,激素与激素之间往往存在着协同作用或拮抗作用,这对维持其功能活动的相对稳定起着重要作用。例如,生长素、肾上腺素、糖皮质激素及胰高血糖素,虽然使用的环节不同,但均能提高血糖,在升糖效应上有协同作用;相反;胰岛素则以降低血糖,与上述激素的升糖效应有拮抗作用。甲状旁腺激素与1,12-二羟维生素D3对血钙的调节是相辅相成的,而降钙素则有拮抗作用。激素之间的协同作用与拮抗作用的机制比较复杂,可以发生在受体水平,也可以发生在受体后信息传递过程,或者是细胞内酶促反应的某一环节。例如,甲状腺激素可使许多组织β-肾上腺素能受体增加,提高对儿茶酚胺的敏感性,增强其效应。孕酮与醛固醛在受体水平存在着拮抗作用,虽然孕酮与醛固酮受体的亲和性较小,但当孕酮浓度升高时,则可与醛固酮竞争同一受体,从而减弱醛固酮调节水盐代谢的作用。前列环素可使血小板内cAMP增多,从而抑制血小板聚集;相反,血栓素A2却能使血小板内cAMP减少,促进血小板的聚集。

2.胞内受体的信息转导过程:信息转导途径的交互联系The Cross-talks of Signaling Transduction Pathways

细胞间信道 还有一种通道,不是沟通胞浆和细胞外液的跨膜通道,而是允许相邻细胞之间直接进行胞浆内物质交换的通道,故称为细胞间通道。这种通道研究,是从缝隙连接超微结构观察开始的。在缝隙连接处相邻两细胞的膜仅隔开2.0nm左右,而且像是有某种物质结构把两者连接起来;将两侧细胞膜分离进行超微结构观察和分子生物学分析,发现每一侧的膜上都整齐地地排列着许多蛋白质颗粒,每个颗粒实际是由6个蛋白质亚单位构成的6聚体蛋白质,中间包绕一个水相孔道;构成颗粒的蛋白质和中心孔道贯穿所在膜的脂质双分子层;在两侧细胞膜靠紧形成细胞间的缝隙连接时,两侧膜上的各颗粒即通道样结构都两两对接起来,于是形成了一条条沟通两细胞胞浆的通路,而与细胞间液不相沟通。这种细胞间通道的孔洞大小,一般可允许分子量小于1.0~1.5kd或分子直径小于1.0nm的物质分子通过,这包括了电解质离子、氨基酸、葡萄糖和核苷酸等。这种缝隙连接或细胞间通道多见于肝细胞、心肌细胞、肠平滑肌细胞、晶状体细胞和一些神经细胞之间。缝隙连接不一定是细胞间的一种永久性结构;至少在体外培养的细胞之间的缝隙连接或其中包含颗粒的多少,可因不同环境因素而变化;似乎是细胞膜中经常有单方面装配好的通道颗粒存在,在两侧膜靠近并有其他调控因素存在时,就有可能实现对接,而在另一些因素存在时,两方面还可再分离。已对接的通道是否处于“开放”状态,也要受到多种因素的调控,例如当细胞内Ca2+、H+浓度增加时,可促使细胞间通道关闭。细胞间通道的存在,有利于功能相同而又密接的一组细胞之间进行离子、营养物质,甚至一些信息物质的沟通,造成它们进行同步性活动的可能性。

另外,有的激素本身并不能直接对某些器官、组织或细胞产生生理效应,然而在它存在的条件下,可使另一种激素的作用明显增强,即对另一种激素有调节起支持作用。这种现象称为允许作用。糖皮质激素的允许作用是最明显的,它对心肌和血管平滑肌并元收缩作用,但是,必须有糖皮质激素有存在,儿茶酚胺才能很好地发挥对心血管的调节作用。关于允许作用的机制,至今尚未完全清楚。过去认为,允许作用是由于糖皮质激素抑制儿茶酚-O-甲基移位酶,使儿茶酚胺降解速率减慢,导致儿茶酚胺作用增强。现在通过对受体和受体水平的研究,也可以调节受体介导的细胞内住处传递过程,如影响腺苷酸环化酶的活性以及cAMP的生成等。

  1. 一条信息途径成员可参与激活或抑制另一条信息途径;

二、由膜的特异受体蛋白质、G-蛋白和膜的效应器酶组成的跨膜信号传递系统

三、激素作用的机制

2. 两种不同的信息途径可共同作用于同一种效应蛋白或同一基因调控区而协同发挥作用;

这是另一类型的跨膜信号传递。最初是从对激素作用机制的研究开始的。60年代在研究肾上腺素引起肝细胞中糖原分解为葡萄糖的作用机制时,发现如果使肾上腺素单独和分离出的细胞膜碎片相互作用,可以生成一种分子量小、能耐热的物质,当把这种物质同肝细胞的胞浆单独作用时,也能引起其中糖原的分解,同肾上腺素作用于完整的肝细胞时有类似的效应。实验提示,在肾上腺素正常起作用时,它只是作用于肝细胞的膜表面。通过某种发生在膜结构中的过程,先在胞浆中生成一种小分子物质,后者再实现肾上腺素分解糖原的作用。这种小分子物质不久被证明是环-磷酸腺苷。以后又陆续发现,很多其他激素类物质作用于相应的靶细胞时,都是先同膜表面的特异受体相结合,再引起膜内侧胞浆中cAMP含量的增加,实现激素对细胞内功能的影响。这样就把cAMP称作第二信使,这是相对于把激素分子这类外来化学信号看作第一信使而言的。

激素作为信息物质与靶细胞上的受体结合后,如何把信息传递到细胞内,并经过怎样的错综复杂的反应过程,最终产生细胞生物效应的机制,一直是内分泌学基础理论研究的重要领域。近一二十年来,随着分子生物学的发展,关于激素作用机制的研究,获得了迅速进展,不断丰富与完善了关于激素作用机制的理论学说。激素按其化学性质分为两在类枣含氮激素和类固醇激素,这两类激素有作用机制也完全不同,现分别叙述。

  1. 一种信息可分别作用于几条信息传递途径。信息转导与疾病Signal Transduction and Diseases

导致cAMP产生的膜结构内部的过程颇为复杂:它至少与膜中三类特殊的蛋白质有关。第一类是能与到达膜表面的外来化学信号作特异性结合的受体蛋白质,这是一些真正可以称作受体的物质。目前已用分子生物学的方法证明,它们是一些独立的蛋白质分子;已经确定的近100种这类受体,都具有类似的分子结构,也属于同一蛋白质家族:即它们都由约300~400个氨基酸残基组成,有一个较长的细胞外N-末端,接着在肽链中出现7个由22~28个主要为疏水性氨基酸组成的α-螺旋,说明这肽链至少要反复贯穿膜7次,形成一个球形蛋白质分子,还有一段位于膜内侧的肽链C-末端。目前认为,受体分子中第7个跨膜螺旋是能够识别、即能结合某种特定外来化学信号的部位;在受体因结合了特异化学信号而激活时,将进而作用于膜中另一类蛋白质,即G-蛋白质。

含氮激素有作用机制枣第二信使学说

家族性高胆固醇血症:LDL受体缺陷。非胰岛素依赖型糖尿病:胰岛素受体减少或功能障碍。其他:如霍乱和白日咳 的发病与G蛋白的异常有关。

G-蛋白是鸟苷酸结合蛋白的简称,也是存在于膜结构中的一类蛋白质家族,根据它们分子结构中少数氨基酸残基序列上的不同,已被区分出有数十种,但结构和功能极为相似。G-蛋白通常由α-、β-、和γ-3个亚单位组成;α-亚单位通常起催化亚单位的作用,当G-蛋白未被激活时,它结合了一分子的GDP;当G-蛋白与激活了的受体蛋白在膜中相遇时,α-亚单位与GDP分离而又与一分子的GTP结合,这时α-亚单位同其他两个亚单位分离,并对膜结构中的第三类称为膜的效应器酶的蛋白质起作用,后者的激活可以引致胞浆中第二信使物质的生成增加。上述肾上腺素的作用,就是先由激素激活膜上相应的受体后,通过一种称为Gs的G-蛋白的中介,激活了作为效应器酶的腺苷酸环化酶,使胞浆中的ATP生成了起第二信使作用的cAMP。由于第二信使物质的生成经过多级催化作用,少数几个膜外化学信号分子同受体的结合,就可能在胞浆中生成数目众多的第二信使分子,这是这种类型的跨膜信号传递的重要特点之一。

第二信使学说是Sutherland等于1965年提出来的。Sutherland学派在研究糖原酵解第一步所需限速酶枣磷酸化酶的活性时,发胰高血糖素与肾上腺素可使肝匀浆在APT、Mg2+与腺苷酸环化酶的作用下产生一种新物质,这种物质具有激活磷酸体酶从而催化糖原酵解的作用。实验证明,它是环-磷腺苷,在Mg2+存在的条件下,腺苷酸化酶促进ATPA转变为cAMP。CAMP在磷酸二酯酶的作用下,降解为5ˊAMP。随后,进一步发现cAMP之所以能激活磷酸化酶,是由于cAMP激活了另一种酶,即依赖cAMP的蛋白激酶而完成的。

细胞的生长、增殖、分化、衰老、死亡

图2-9 由膜受体-G-蛋白-膜效应器酶组成的跨膜信号

Sutherland综合这些资料提出第二信使学说,其主要内容包括:①激素是第一信使,它可与靶细胞膜上具有立体构型的专一性受体结合;②激素与受体结合后,激活漠上的腺苷酸环化酶系统;③在mg2+楔存在的条件下,腺苷酸环化酶促使ATP转变为cAMP,cAMP是第二信使,信息由第一信使传递给第二信使;④cAMP是使无活性的蛋白激酶激活。PKA具有两个亚单位,即调节亚单位与催化亚单位。CAMP与PKA的调节亚单位结合,导致调节亚单位与催化亚脱离而使PKA激活,催化细胞内多种蛋白质发生磷酸化反应,包括一些蛋白发生磷酸化,从而引起靶细胞各种生理生化反应。

激素和体内分泌系统

传递系统和第二信使类物质的生成

图11-2 含氧激素作用机制示意图

激素又是生物体的特定细胞内合成的能使生物体发生一定反应的有机分子。调节有机体各种生理活动,维持内环境相对稳定。

目前发现膜的效应器酶并不只腺苷酸环化酶一种,因而第二信使物质也不只cAMP一种,如近年来还发现,有相当数量的外界刺激信号作用于受体后,可以通过一种称为Go的G-蛋白,再激活一种称为磷脂酶C的膜效应器酶,以膜结构中称为磷脂酰肌醇的磷脂分子为间接底物,生成两种分别称为三磷酸酰肌醇和二酰甘油的第二信使,影响细胞内过程,完成跨膜信号传递。虽然如此,对应于细胞所能接受的多种刺激和与它们相对应的受体数目而言,膜内G-蛋白、效应器酶和最后生成的第二信使类物质的种类,还是相对地少得多。这说明,上述由膜中蛋白质酶促反应生成第二信使的途径,具有相当程度的“通用”性质。

H:激素 R:受体 GP:G蛋白 AC:腺苷酸环化酶PDE:磷酸 二酯酶

激素作用的一般特征1、相对特异性2、激素的高效能作用3、激素间相互作用 竞争作用 协同作用 拮抗作用 激素的“允许作用”激素的种类植物激素: 生长素、赤酶素、细胞分裂素、多胺、乙烯、 脱落酸等

由于上述这种跨膜信号传递的形式是在研究激素的作用机制时发现的,而且后来发现绝大多数肽类激素都是通过这一形式起作用的,因此曾一度错误地认为,这只是激素性化学信号跨膜信号传递方式。但近年的资料说明,事实并非如此:在神经递质类物质中,除了上述氨基酸类递质外,其余不论是小分子的经典递质还是后来发现的数量众多的神经肽类物质,都主要是以在突触后细胞中产生第二信使类物质来完成跨膜信号传递的,这些第二信使物质通过在胞浆中的扩散,在膜的内侧面作用于某些特殊的离子通道,引起突触后膜较广泛而缓慢的电变化。最近证明,在视网膜信号转换过程中,光量子被作为受体的视色素如视紫红质吸收后,也是先激活称为Gt的G-蛋白,再激活作为效应器的磷酸二酯酶,使视杆细胞外段中cGMP的分解加强,最后使光刺激转变为外段膜的电变化。

RKr :蛋白激酶调节亚单位 PKc:蛋白激酶催化亚单位

动物激素无脊椎动物脊椎动物 种类较多;特异性远比植物激素的特异性高; 有专门产生激素的器官,即内分泌腺、内分泌细胞

上述两种主要的跨膜信号传递方式的作用过程,有以下几点值得注意。第一,这两种作用形式并不是绝对分离的,两者之间可以互相影响或在作用上有交叉。一些第二信使类物质可以调节某些电压门控通道和化学门控通道蛋白质的功能状态;而且被某种受体激活了的G-蛋白,有的不通过第二信使就能直接作用于膜结构中的通道结构,如上述Gs激活时可以直接打开Ca2+通道。第二,对于许多外来化学信号分子,并不是一种化学信号只能作用于两种跨膜信号传递系统中的一种;以ACh为例,当它们作用于神经-肌接头处时,终板膜上有同它们作特异结合的化学门控通道;但当ACh作用于心肌或内脏平滑肌时,遇到的却是受体-G-蛋白-第二信使系统。由此可见,同一种刺激信号通过何种跨膜信号传递系统起作用,关键因素在于靶细胞膜上具有何种感受结构;近年还发现,即便是M-型ACh受体,也可再区分出许多种亚型,有的亚型以cAMP为第二信使,有的以IP3和DG为第二信使。不同细胞甚或同一细胞的膜上具有对应于同一化学信号的不同受体型或其亚型,在跨膜信号传递中并不少见。近年来发现基本嗅觉刺激全都是通过嗅上皮中不同的膜受体-第二信使系统起作用的,但在4种基本味觉刺激中,只有咸和酸刺激是通过细胞上相应的化学门控上通道起作用的,甜味物质是通过受体-第二信使系统起作用的,而苦味物质则因物质分子不同而分别通过通道和受体两种途径起作用。第三,跨膜信号传递的方式虽然相对地较少,但也不一定只限于上述两种。近年来有一些特殊的化学信号影响其靶细胞的方式受到广泛的重视,很可能成为跨膜信号传递的一种新类型;这就是发现胰岛素等一些肽类激素和其他与机体发育、生长、修复、增生、甚至细胞癌变有关的因子,如神经生长因子、表皮生长因子、血小板源生长因子、纤维母细胞生长因子、以及与细胞生成有关的集落刺激因子等,都是通过靶细胞表面一类称为酪氨酸激酶受体的蛋白质起作用的,这类受体结构简单,只有一个跨膜α-螺旋,当位于膜外侧的较长的肽链部分同特定的化学信号结合后,可以直接引起受体肽链的膜内段激活,使之具有磷酸激酶活性,通过使自身肽链和膜内蛋白质底物中的酪氨酸残基发生磷酸化,因而产生细胞内效应。这方面的新资料正在积累之中。

以cAMP为第二信使学说的指出,推动了激素作用机制的研究工作迅速深入发展。近年来的研究资料表明,cAMP并不是唯一的第二信使,可能作为第二信使的化学物质还有cGMP、三磷酸肌醇、二酰甘油、Ca2+等。另外,关于细胞表现受体调节、腺苷酸环化酶活化机制、蛋白激酶C的作用等方面的研究都取得了很大进展,现概述如下:

激素的分类1、含氮的激素氨基酸衍生物: Trp—褪黑激素和5-HT Tyr—甲状腺激素、肾上腺素等肽类和蛋白质激素: 胰岛素、神经激素2、类固醇类激素: 皮质醇、性激素3、脂肪酸衍生物:前列腺素激素的作用1、调节物质代谢和水盐平衡,维持内环境稳态2、促进细胞分裂与分化,保证组织、器官发育、成熟和生长,并影响衰老过程3、影响中枢神经系统及植物性神经系统的发育及其活动,与学习、记忆以及行为有关4、促进生殖器官的发育与成熟,调节包括受精、受精卵运行、着床、怀孕以及泌乳等生殖过程5、与神经系统密切配合使机体能更好的适应环境变化,增强应激能力和适应能力。器 官甲状腺、甲状旁腺胰岛肾上腺性腺脑垂体下丘脑松果体胸腺

癌基因和跨膜信号传递近年发现与上述跨膜信号传递有关的一些蛋白质,如受体、G-蛋白、各种生长刺激因子和营养因子、以及各种蛋白激酶等,它们在细胞内的生物合成,是由人正常染色体中被称为细胞原癌基因的一类基因所编码和表达生成的。这些基因所以被称为原癌基因,是因为它们的硷基排列顺序同一些能在动物引起肿瘤的病毒DNA的硷基排列顺序相一致。关于细胞癌基因与人类肿瘤发生的关系目前尚不清楚,但它们的正常表达产物,却是人体无时无刻不在进行着的各种跨膜信号传递过程所必需的。试设想,如果由于遗传和变异等原因使细胞不能合成结构和功能正常的G-蛋白,对人体将会有何等广泛而重要的影响!另外,在细胞原癌基因中,有一类可被胞浆中产生的第二信使等物质所激活,生成某种蛋白质;但它们在胞浆中生成后,一般又进入核内,进而诱导另一些基因进行表达。这类癌基因从激活到蛋白质生成,比一般基因表达为快,称为快速基因,而它们生成的蛋白质的作用则是激活另一些基因的表达,故快速基因的表达产物可称为转录调节因子或第三信使。所以称为第三信使是因为它们由第二信使类物质的作用而生成,而它们自身的作用又引起新的基因表达,生成一些可能对细胞结构和功能有较长远影响的蛋白质。这样外来信号不仅通过第二信使的合成在胞浆中引起一些即时反应,还可能通过第三信使引起细胞功能和结构长时间的适应性改变。

1.激素与受体的相互作用 激素有膜受体多为糖蛋白,其结构一般分为三部分:细胞膜外区段、质膜部分和细胞膜内区段。细胞膜外区段含有许多糖基,是识别激素并与之结合的部位。激素分子和靶细胞受体的表现,均由许多不对称的功能基团构成极为复杂而又可变的立体构型。激素和受体可以相互诱导而改变本身的构型以适应对方的构型,这就为激素与受体发生专一性结合提供了物质基础。

1、甲状腺(thyroid gland)与甲状腺素甲状腺素和三碘甲腺原氨酸,滤泡细胞,是酪氨酸的碘化衍生物。作用是提高糖类代谢和氧化磷酸化中多种酶的活性。甲状腺机能亢进(hyperthyroidism)甲状腺机能减退(hypothyroidism)甲状腺肿降钙素(calcitonin):滤泡旁细胞,32aa,使血液和体液中钙的浓度降低,防止骨骼中Ca2+过多逸入血液。

激素与受体的结合力称为亲和力。一般来说,由于相互结合是激素作用的第一步,所以亲和力与激素的生物学作用往往一致,但激素的类似物可与受体结合而不表现激素的作用,相反却阻断激素与受体相结合。实验证明,亲和力可以随生理条件的变化而发生改变,如动物性周期的不同阶段,卵巢颗粒细胞上的的卵泡刺激素受体的亲和力是不相同的。某一激素与受体结合时,其邻近受体的亲和力也可出现增高或降低的现象。

2、甲状旁腺(parathyroid glands)甲状旁腺素(parathormone):84aa,与降钙素互相拮抗。提高血钙含量、减少磷酸含量的作用。一方面能抑制肾及肠的排钙能力,另一方面又能使骨骼中的钙释放到血液中。

受体除表现亲和力改变外,其数量也可发生变化。有人用淋巴细胞膜上胰岛素受体进行观察发现,如长期使用大剂量的胰岛素,将出现胰岛素受体数量减少,亲和力也降低;当把胰岛素的量降低后,受体的数量和亲和力可恢复正常。许多种激素都会出现上述情况。这种激素使其特异性受体数量减少的现象,称为减衰调节或简称下调。下调发生的机制可能与激素-受体复合物内移入胞有关。相反,有些激素也可使其特异性受体数量增多,称为上增调节或简称上调,如催乳素、卵泡刺激素、血管紧张素等都可以出现上调现象。下调或上调现象说明,受体或上调现象说明,受体的合成与降解处于动态平衡之中,其数量是这一平衡的结果,它的多少与激素有量相适应,以调节靶细胞对激素有敏感性与反应强度。

3、胰岛(islets of Langerhans)细胞:胰高血糖素:肝脏

2.G蛋白在信息传递中的作用激素受体与腺苷酸环化酶是细胞膜上两类分开的蛋白质。激素受体结合的部分在细胞膜的外表面,而腺苷环化酶在膜的胞浆面,在两者之间存在一种起耦联作用的调节蛋白——鸟苷酸结合蛋白,简称G蛋白。G蛋白由α、β和γ三个亚单位组成,α亚单位上有鸟苷酸结合位点。当G蛋白上结合的鸟苷酸为GTP时则激活而发挥作用,但当G蛋白上的GTP水解为GDPA时则失去活性。当激素与受体结合时,活化的受体便与G蛋白的α亚单位结合,并促使其与β、γ亚单位脱离,才能对腺苷酸环化酶起激活或抑制作用。

相关文章

G蛋白可分为兴奋型G蛋白和抑制型G蛋白 Gi。Gs的作用是激活腺苷酸环化酶,从而使cAMP生成增多;Gi的作用则是抑制腺苷酸环化酶的活性,使cAMP生成减少。有人提出,细胞膜的激素受体也可分为兴奋型与抑制型两种,它们分别与兴奋性激素或抑制性激素(Hi)发生结合,随后分别启动Gs或Gi,再通过激活或抑制腺苷酸环化酶使cAMP增加或减少而发挥作用。

细胞通讯与细胞信号转导

3.三磷酸肌醇和二酰甘油为第二信使的信息传递系统许多含氮激素是以cAMP为第二信使调节细胞功能活动的,但有些含氮激素的作用信息并不以cAMP为媒介进行传递,如胰岛素、催产素、催乳素、某些下丘脑调节肽和生长因子等。实验证明,这些激素作用于膜受体后,往往引起细胞膜磷脂酰肌醇转变成为三磷酸肌醇(inositol-1,4,5,triphosphate,IP3)和二酰甘油(diacylglycerol,DG),并导致胞浆中Ca2+浓度增高。近年来,有人提出IP3和DG可能是第二信使的学说引起人们的重视,并且得到越来越我的实验证实。这一学说认为,在激素的作用下,可能通过G蛋白的介导,激活细胞膜内的磷脂酶C(phosphinositol-specificphospholipase C.PLC),它使由磷脂酰肌醇二次磷酸化生成的磷脂酰二磷肌醇分解,生成IP3和DG。DG生成后仍留在膜中,IP3则进入胞浆。在未受到激素作用时,细胞膜几乎不存在游离的DG,细胞内IP3的含量也极微,只有在细胞3受到相应激素作用时,才加速PIP2的降解,大量产生IP3和DG。IP3的作用是促使细胞内Ca2+贮存库释放Ca2+进入胞浆。细胞内Ca2+主要贮存在线粒体与内质网中。实验证明,IP3引起Ca2+的释放是来自内质网而不是线粒体,因为在内质网膜上有IP3受体,IP3与其特异性受体结合后,激活Ca2+通道,使Ca2+从内质网中进入胞浆。IP3诱发Ca2+动员最初发反应是引起暂短的内质网释放Ca2+,随后是由Ca2+释放诱发作用较长的细胞外Ca2+内流,导致胞浆中Ca2+浓度增加。Ca2+与细胞内的钙调蛋白结合后,可激活蛋白酶,促进蛋白质磷酸化,从而调节细胞的功能活动。

细胞通讯与细胞信号转导

DG的作用主要是它能特异性激活蛋白激酶CPKC的激活依赖于Ca2+的存在。激活的PKC与PKA一样可使多种蛋白质或酶发生磷酸化反应,进而调节细胞的生物效应。另外,DG的降解产物花生四烯酸是合成前列腺素的原料,花生四烯酸与前列腺素的过氧化物又参与鸟苷酸环化酶的激活,促进cGMP的生成。CGMP作为另一种可能的第二信使,通过激活蛋白激酶G(PKG)而改变细胞的功能。

细胞通讯与细胞信号转导

图11-3 磷脂酰肌醇信息传递系统示意图

PIP2:磷脂酰二磷肌醇 DG:二酰甘油 IP3:三磷酸肌醇PKC:蛋白激酶C CaM:钙调蛋白

类固醇激素作用机制枣基因表达学说

因固醇激素的分子小、呈脂溶性,因此可透过细胞膜进入细胞。在进入细胞之后,经过两个步骤影响基因表面而发挥作用,故把此种作用机制称为二步作用原理,或称为基因表达学说。

第一步是激素与胞浆受体结合,形成激素-胞浆受体复合物。在靶细胞将中存在着类固醇激素受体,它们是蛋白质,与相应激素结合特点是专一性强、亲和性大。例如,子宫组织胞浆的雌二醇受体能与17β-雌二醇结合,而不能与17α-雌二醇结合。激素与受体的亲和性大小与激素的作用强度是平行的。而且胞浆受体的含量也随靶器官的功能状态的变化而发生改变。当激素进入细胞内与胞浆受体结合后,受体蛋白发生构型变化,从而命名激素-胞浆受体复合物获得进入核内的能力,由胞浆转移至核内。第二步是与核内受体相互结合,形成激素-核受体复合物,从而激发DNA的转录过程,生成新的mRNA,诱导蛋白质合成,引起相应的生物效应。

图11-4 类固醇激素作用机制示意图

近年来由于基因工程技术的发展与应用,不少类固醇激素的核内受体的结构已经清楚。它们是特异地对转录起调节作用的蛋白,其活性受因固醇激素的控制。核受体主要有三个功能结构域:激素结合结构域、DNAA结构结构域和转录增强结构域。一旦激素与受体结合,受体的分子构象发生改变,暴露出隐蔽于分子内部的DNA结合结构域及转录增强结构域,使受体DNA结合,从而产生增强转录的效应。另外,政治家实验资料表明,在DNA结合结构域可能有一个特异序列的氨基酸片断,它起着介导激素受体复合物与染色质中特定的部位相结合,发挥核定位信号的作用。

甲状腺激素虽属含氮激素,但其作用机制却与类固醇激素相似,它可进入细胞内,但不经过与胞浆受体结合即进入核内,与核受体结合调节基因表达。

应该指出,含氮激素可作用于转录与翻译阶段而影响蛋白质的合成;反过来,类固醇激素也可以作用于细胞膜引起基因表达学说难以解释的某引起现象。

郑重声明:本文版权归大赢家比分所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。